Evaluation of sST-2 Role in LVH Regression Obtained in Hypertensive Mice Models After Blocking Renin-Angiotensin System


  • Lilik Yusetyani Muhammadiyah University Malang
  • Siti Rofida
  • Dian Yuliartha Lestari
  • Wawan Kurniawan
  • Nursela Hijriani
  • Ilham Niawan Saputra
  • Setyawati Soeharto
  • Mohammad Saifur Rahman


LVH-regression, soluble-ST2, renin, ACEi, ARBs, mice-models


Soluble ST2, is a protein which acts as a decoy receptor for interleukin-33, and served as biomarker associated with left ventricular hypertrophy (LVH).  Few data exist in evaluating the effects of anti-hypertensive agents on the role-played form ST2 on regression of LVH. This study was designed to compare the effects of captopril and valsartan on blood pressures, plasma renin and soluble ST2 levels and regression of LVH in hypertensive mice models. Twenty-four male mice (Mus musculus L), were divided into four groups, namely aquadest/control, L-NAME, L-NAME + captopril and L-NAME + valsartan groups respectively. Mice blood pressures were measured on day 14th after induction with L-NAME extract 1.75 mg/25 g BW/day (pretreatment) and day 14th post treatment. Levels of plasma renin, sST2, and ventricular wall thicknesses reflecting LVHs, were measured on day 14th post treatment. Administration of L-NAME within 14 days resulted in making mice models to be hypertensive paralleled by an increase of Ventricular wall thickness. Treatment with captopril and valsartan lowered the blood pressures to normal level within the next 14 days. Valsartan and captopril treatment induced a significant decrease of plasma renin level. Valsartan, but not for captopril treatment prevented wall thickness increase (p < 0.05), while plasma sST2 was not able to mirroring this effect. Captopril and valsartan had similar effect in lowering plasma renin level and   blood pressure, but sST2 seems to be not involved in LVH regression obtained in hypertensive mice models after blocking renin-angiotensin system.

Author Biography

Lilik Yusetyani, Muhammadiyah University Malang

Department of Pharmacy, Faculty of Helath Science


Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123: 327 – 334. doi: 10.1161/CIRCULATIONAHA.108.845792.

Kearney PM, Whelton M, Reynolds K et al. (2005) Global burden of hypertension: Analysis of worldwide data. The Lancet 365 (9455): 217 – 223. doi: 10.1016/S0140-6736(05)17741-1.

Rubattu S, Pagliaro B, Pierelli G et al. (2015) Pathogenesis of target organ damage in hypertension: Role of mitochondrial oxidative stress. International Journal of Molecular Sciences 16 (1): 823 – 839. doi: 10.3390/ijms16010823.

Ministry of Health (MOH) (2013) Riset Kesehatan Dasar (Riskesdas) 2013. Jakarta, Badan Penelitian Dan Pengembangan Kesehatan Kementerian Kesehatan RI.

Ettehad D, Emdin CA, Kiran A et al. (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. The Lancet. 387 (10022): 957 – 967. doi: 10.1016/S0140-6736(15)01225-8.

Bundy JD, Li C, Stuchlik P et al. (2017) Systolic blood pressure reduction and risk of cardiovascular disease and mortality: A systematic review and network meta-analysis. JAMA Cardiology 2 (7): 775 – 781. doi: 10.1001/jamacardio.2017.1421.

Barrios V, Escobar C, Caldero A et al. (2007) Cardiovascular risk profile and risk stratification of the hypertensive population attended by general practitioners and specialists in Spain. The CONTROLRISK study. Journal of Human Hypertension 21: 479 – 485. doi:10.1038/sj.jhh.1002167.

Law MR, Morris K, Wald NJ (2009) Use of blood pres-sure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. The British Medical Journal 338: b1665. doi:10.1136/bmj.b1665.

Kronish IM, Woodward M, Sergie Z et al. (2011) Meta-analysis: Impact of drug class on adherence to antihypertensive. Circulation 123 (15): 1611 – 1621. doi: 10.1161/CIRCULATIONAHA.110.983874.

Fretheim A, Odgaard-Jensen J, Brørs O et al. (2012) Comparative effectiveness of antihypertensive medication for primary prevention of cardiovascular disease: Systematic review and multiple treatments meta-analysis. BMC Medicine 10: 33. doi: 10.1186/1741-7015-10-33.

Zang G (2017) Antihypertensive drugs and the risk of fall injuries: A systematic review and meta-analysis. Journal of International Medical Research 41 (5): 1408 – 1417. doi: 10.1177/0300060513497562.

Simá¹es e Silva AC, Flyn JT (2011) The renin–angiotensin–aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatric Nephrology 27 (10): 1835 – 1845. doi 10.1007/s00467-011-2002.

Tsuda K (2012) Renin-angiotensin system and sympathet-ic neurotransmitter release in the central nervous system of hypertension. Journal of Hypertension 2012: 474870. doi: 10.1155/2012/474870.

Ojji DB, Opie LH, Lecour S, et al. (2013) Relationship betwen left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. The Journal of Clinical Hypertension 15 (12): 899 – 904. doi: 10.1111/jch.12205.

Ciccone MM, Cortese F, Gesualdo M et al. (2013) A novel cardiac bio-marker: ST2: A review. Molecules 8 (12): 15314 – 15328. doi: 10.3390/molecules181215314.

Xanthakis V, Larson MG, Wollert KC et al. (2013) Association

of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: Implications for screening. Journal of the American Heart Association 2: e000399. doi: 10.1161/JAHA.113.000399.

Paulis L, Zicha J, Kunes J et al. (2008) Regression of L-NAME-induces hypertension: The role of nitiric oxide and endothelium-derived constricting factor. Hypertension Research 31 (4): 793 – 803. doi: 10.1291/hypres.31.793.

Sharma PK, Vyawahre NS, Ldhha A (2010) Preclinical screening models for hypertension in rodents: A review. Pharmacologyonline 3: 458 – 472.

Hlavackova L, Janegova A, Ulicna O et al. (2011) Spice up the hypertension diet - curcumin and piperine prevent remodeling of aorta in experimental L-NAME induced hypertension. Nutrition and Metabolism 8: 72 – 83. doi.org/10.1186/1743-7075-8-72.

Ghosh MN (1971) Surface area ratio of some common laboratory species and man. In: Ghosh MN Ed. Fundamentals of experimental pharmacology. Calcutta, Scientific Book Agency. pp 85.

Ugo Basile (2013) Blood Pressure Recorder, (non Inva-sive). BPR Cat. No 58550 for Rats & Mice Leaftlet. Bonsal L. Calculating the Mean Arterial Pressure (MAP). Lippnicott Nursing Center. Wolter Kluwer. http://www.nursingcenter.com/ncblog/

december-2011/calculating-the-map. Accessed date: August 2018.

LDN (2018) Plasma Renin Activity (PRA) ELISA. Instruction for use. LDN Immunoassays and Services. Cat. # MS E-5600. Effective 2016-10-26. Nordhon, Labor. Diagnostika Nord.GmbH & Co.KG. Am Eicchenhain 1.

Abcam (2013) Human ST2 ELISA Kit (ab 100563). Cambridge, Abcam Scientific Support.

Gouda ZA, Ali-Elewa YH, Selim AO (2015) Histological architecture of cardiac myofibers composing the left ventricle of murine heart. Journal of Histology and Histopathology 2 (2): 1 – 8. doi : 10.7243/2055-091X-2-2.

de Champlain J, D’Orléans-Juste P (2001) Role of the renin-angiotensin system on the central and peripheral au-tonomic nervous system. In: D’Orléans-Juste P., Plante G.E. (eds) ACE inhibitors. Milestones in Drug Therapy MDT. Birkhäuser, Basel. pp 145-153. doi: 10.1007/978-3-0348-7579-0_10.

Ma TKW, Kam KKH, Yan BP et al. (2010) Renin–angiotensin–aldosterone system blockade for cardiovascular diseases: current status. British Journal of Pharmacology 160 (6): 1273–1292. doi: 10.1111/j.1476-5381.2010.00750.x

Sobczak S, Sakowicz A, Pietrucha T et al. (2017) Diagnostic utility of biomarkers of left vetricular stress in patients with aortic stenosis and preserved left ventricular ejection fraction. Polish Journal of Thoracic and Cardiovascular Surgery 14 (2): 93 – 98. doi: 10.5114/kitp.2017.68737

Ground M (2014) Quantification of histopathology in Haemotoxylin and Eosin stained muscle sections (DMD_M.1.2.007. 2014.:1-13). http://www.treat-nmd.eu/. Accessed date: August 2018.

Daunoravicius D, Besusparis J, Zurauskas E et al. (2014) Quantification of myoradial fibrosis by digital image analysis and interactive sterology. Diagnostic Pathology 9: 114. doi: 10.1186/1746-1596-9-114

Hadi AM, Mouchaers KTB, Schalij I et al. (2011) Rapid quantification of myocardial fibrosis: A new macro-base automated analysis. Cellular Oncology 34 (4): 343 – 354. doi: 10.1007/s13402-011-0035-7.

Aimo A, Vergaro G, Ripoli A et al. (2017) Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. Journal of the American College of Cardiology: Heart Failure 5 (4): 287 – 296. doi: 10.1016/j.jchf.2016.12.016.

Celic V, Majstorovic A, Pencic-Popovic B et al. (2016) Soluble ST2 levels and left ventricular structure and function in patients with metabolic syndrome. Annals of Laboratory Medicine 36 (6): 542 – 549. doi: 10.3343/alm.2016.36.6.542.

Hur M, Kim H, Kim HJ et al. (2015) Soluble ST2 has a prognostic role in patients with suspected sepsis. Annals of Laboratory Medicine 35 (6): 570 – 557. doi: 10.3343/alm.2015.35.6.

Yang HS, Kim HJ, Shim HJ et al. (2015) Soluble ST2 and troponin I combination: Useful biomarker for predicting development of stress cardiomyopathy in patients admit-ted to the medical intensive care unit. Heart and Lung 44 (4): 282 – 288. doi: 10.1016/j.hrtlng.2015.04.010.

Yang HS, Hur M, Kim H et al. (2016) Soluble suppression of tumorigenicity 2 and echocardiography in sepsis. Annals of Laboratory Medicine 36 (6): 590 – 594. doi: 10.3343/alm.2016.36.


Chen LQ, de Lemos JA, Das SR et al. (2013) Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: The Dallas Heart Study. Clinical Chemistry 59: 536 – 546. doi: 10.1373/clinchem.2012.191106.

Willems S, Quax PHA, de Borst GJ et al. (2013) Soluble ST2 levels are not associated with secondary cardiovascular events and vulnerable plaque phenotype in patients with carotid artery stenosis. Atherosclerosis 231: 48 – 53. doi: 10.1016/j.atherosclerosis.2013.08.024.

Malek F, Vondrakova D, Dvorak J et al. (2016) Correlation of biomarkers of cardiac remodeling, inflammation, and myofibrosis with parameters of cardiac structure and function in patients with arterial hypertension. Journal of Hypertension 34: e244. doi: 10.1097/01.hjh.0000492042.70384.8a.

Gao S, Huan SL, Han LY et al. (2014) Overexpression of serum sST2 is associated with poor prognosis in acute-on-chronic hepatitis B liver failure. Clinics and Research in Hepatology and Gastroenterology 39 (3): 315 – 323. doi: 10.1016/j.clinre.2014.