Resistance of Aedes as a Vectors Potential for Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia

Authors

  • Martini Martini Diponegoro University
  • Retno Hestiningsih Public Health Faculty of Diponegoro University
  • Bagoes Widjanarko Public Health Faculty of Diponegoro University
  • Susiana Purwantisasari Mathematic and Scien Faculty of Diponegoro University

DOI:

https://doi.org/10.11594/jtls.09.01.12

Keywords:

Aedes sp., vector capacity, dengue, Dengue Hemorrhagic Fever (DHF)

Abstract

Dengue Hemorrhagic Fever (DHF) is a significant health problem in Semarang, Indonesia. A Certain type of insecticides has been widely applied beginning in the last decade as an effort to control the mosquito vectors of dengue virus. This practice could lead to increased resistance in mosquito populations toward these types of insecticides. This research aimed to describe the resistance status of Aedes sp. populations in Semarang. A cross-sectional design study was conducted in 2015, with Aedes sp. populations sampled in several villages of Semarang. Field strains of Aedes sp. eggs were collected using ovitraps and larvae from entomological surveys. Mosquito adults were raised from the collected eggs and larvae under standard conditions and used for biochemical assays. ELISA examined Aedes sp. resistance status. The results showed that there was monooxygenase activity in Aedes sp. populations. In quantitative terms, 77.8% of mosquito samples showed an Optical Density (OD) more than the cut-off point (0.165). Resistance to synthetic pyrethroid insecticide in Aedes sp. mosquitoes population in Semarang may be caused by the mechanism of monooxygenase detoxification enzymes in particular. This case indicated that Aedes sp. has a high capacity as a vector to transmit the dengue virus in Semarang.

Author Biography

  • Martini Martini, Diponegoro University
    epidemiology and tropical disease of Public Health, Diponegor University

References

Mc Michael AJ, Champbell-Lendrum DH, Corvalan CF et al. (2003) Climate change and human health risk and response. Geneva, WHO.

Sunaryo (2013) Peta kerentanan vektor demam berdarah dengue Aedes aegypti di Provinsi Jawa Tengah. Banjarnegara, Balai Litbang P2B2.

BPS Semarang (2015) Semarang dalam angka tahun 2014. Semarang, BPS Semarang.

Novelina BA (2007) Habitat dan perilaku nyamuk Aedes serta kaitannya dengan kasus demam berdarah di Kelurahan Utan Kayu Utara Jakarta Timur. Master Thesis. Bogor Institure of Agricultural.

Widiarti, Heriyanto B, Boewono DT et al. (2011) Peta resistensi vektor demam berdarah dengue Aedes aegypti terhadap insektisida kelompok organofosfat, karbamat dan pyretroid di Provinsi Jawa Tengah dan Daerah Istimewa Yogyakarta. Buletin Penelitian Kesehatan 39 (4): 176 – 189.

WHO (1995) Vector control for malaria and other mosquito-borne diseases. WHO Technical report Series No. 857. Geneva, WHO.

Marcombe S, Mathieu RB, Pocque N et al. (2012) Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS ONE 7 (2). doi: 10.1371/journal.pone.0030989.

Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annual Reviews of Entomology 45: 371 – 391. doi: 10.1146/annurev.ento.45.1.371.

Hemingway J, Karunaratne SH (1998) Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12 (1): 1 – 12.

Georghiou GP, Wirth M, Saume F, Knudsen AB (1987) Potential for organophosphate resistance in Aedes aegypti (Diptera: Culicidae) in the Caribbean area and neighboring countries. Journal of Medical Entomology 24 (3): 290 – 294. doi: 10.1093/jmedent/24.3.290.

Rawlins SC (1998) Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Revista Panamericana de Salud Pública 4 (4): 243 – 251.

Fox I, Boike AH, Garcia-Moll I (1960) Notes on rock hole breeding and resistance of Aedes aegypti in Puerto Rico. The American Journal of Tropical Medicine and Hygiene 9 (4): 425 – 429. doi: 10.4269/ajtmh.1960.9.425.

da Cunha MP, Lima JB, Brogdon WG et al (2005) Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Memórias do Instituto Oswaldo Cruz 100 (4): 441 – 444. doi: 10.1590/S0074-02762005000400017.

Lima EP, Paiva MH , de Araújo AP et al. (2011) Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasit Vectors 12: 4 – 5. doi: 10.1186/1756-3305-4-5.

Dirjen P2PL Ministry of Healthy (2012) Pedoman Penggunaan Insektisida (Pestisida) dalam Pengendalian Vektor. Kementerian Kesehatan RI. Jakarta, Ministry of Healthy Republic of Indonesia.

Lidia K, Levina E, Setianingrum S (2008) Deteksi dini resistensi nyamuk Aedes albopictus terhadap insektisida organofosfat di daerah endemis demam berdarah dengue di Palu (Sulawesi Tengah). Media Kesehatan Masyarakat 3 (2): 105-110.

Widiastuti D, Sunaryo, Pramestuti N, Martini M (2015) Monooxygenase activity in Aedes aegypti population in Tem-

balang subdistrict, Semarang city. Aspirator: Journal of Vector Borne Diseases Studies 7 (1): 1 – 6.

Poison KA, Curtis C, Seng CM, Olson JG (2001) Susceptibility of two Cambodian populations of Aedes aegypti Mosquito larvae to Temephos During 2001. Dengue Bulletin 25: 79 – 83.

Tarumingkeng RC (1992) Insektisida: Sifat, mekanisme kerja, dan dampak penggunaan. Jakarta, UKRIDA Press.

Shinta, Sukowati S, Fauziah A (2008) Kerentanan nyamuk Aedes aegypti di Daerah Khusus Ibukota Jakarta dan Bogor terhadap insektisida malathion dan lamdachyhalodrin. Jurnal Ekologi Kesehatan 7 (1): 722 – 731.

Zulhasril, Lesmana SD (2010) Resistensi larva Aedes aegypti terhadap insektisida organofosfat di Tanjung Priok dan Mampang Prapatan. Majalah Kedokteran FK UKI 17 (3): 96 – 107.

David J, Ismail HM, Chandor-Proust A et al. (2013) Role of Cytochrome P450s in insecticide resistance: Impact on the control of mosquito-borne diseases and use of insecticides on earth. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1612): 20120429. doi: 10.1098/rstb.2012.0429.

Scott JG (2008) Insect cytochrome P450s: Thinking beyond detoxification. Recent Advances in Insect Physiology, Toxicology and Molecular Biology 2008: 117 – 204.

Downloads

Published

2019-02-18

Issue

Section

Articles