Authentication of Barbonymus spp. From Lake Singkarak Using DNA Barcoding
Authentication of Barbonymus spp. From Lake Singkarak using DNA Barcoding
DOI:
https://doi.org/10.11594/jtls.14.03.15Keywords:
Genetic diversity, Biodiversity conservation, freshwater fish, molecular, Phylogenetic treeAbstract
The local community distinguishes between Barbonymus belinka (Balingka) and Barbonymus schwanefeldii (Kapiek) in Lake Singkarak based on size due to the morphological similarities between the two species. From previous reports, B. belinka (Balingka) is a fish endemic to Lake Singkarak, West Sumatra, while B. schwanefeldii has a wider distribution, including Sumatra, Kalimantan, and Java. Consequently, molecular identification is necessary to discern between the species and to understand the DNA barcode characteristics of fish belonging to the genus Barbonymus in Lake Singkarak. One molecular technique utilized for species identification is DNA barcoding, which focuses on the COI (Cytochrome Oxidase Subunit I) gene. Liver tissue samples from Balingka and Kapiek fish from Lake Singkarak were used in the study. Based on 585 bp of COI gene sequences and 30 comparison sequences from BOLD system and GenBank NCBI, seven samples from Lake Singkarak show a genetic distance of 0–1.2% from B. schwanefeldii populations elsewhere, with 15 differing nucleotide bases. Moreover, samples from Lake Singkarak show a genetic distance of 7.7–8.2% from B. belinka in the BOLD system from Aceh, with 42 differing nucleotide bases. Furthermore, two specific bases are present in B. schwanefeldii from Lake Singkarak. Based on the results of this research, it is known that all samples from Lake Singkarak, including Balingka and Kapiek, belong to the same species, namely B. schwanefeldii.
References
Kottelat M, Kartikasari SN, Wirjoatmodjo S, Whitten T (1993) Freshwater Fishes of Western Indonesia and Sulawesi. Periplus Edition.
Kottelat M, Raffles Museum of Biodiversity Research (2013) The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves, and es-tuaries. National University of Singapore.
Fishbase: Barbonymus Genus (2018) http://www.fishbase.org/Nomenclature/ScientificNameSearchList.php?. Accessed date: 11 December 2022.
Weber M, de Beaufort LF (1916) The fishes of the Indo-Australian Archipelago. III. Ostariophysi: II Cy-prinoidea Apodes, Synbranchi. Netherlands, Brill Leiden.
Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. In Trends in Ecology and Evolution 30 (1): 25 – 35. doi: 10.1016/j.tree.2014.10.008.
Imtiaz A, Nor SA, Naim DM (2017) Progress and potential of DNA barcoding for species identification of fish species. Biodiversitas Journal of Biological Di-versity 18 (4): 1394–1405. doi: 10.13057/biodiv/d180415.
Tsoupas A, Papavasileiou S, Minoudi S et al. (2022) DNA barcoding identification of Greek freshwater fishes. PLoS ONE 17(1): e0263118. doi: 10.1371/journal.pone.0263118.
Hubert N, Hanner R (2015) DNA barcoding, species delineation and taxonomy: a historical perspective. DNA Barcodes 3 (1): 1–6. doi: 10.1515/dna-2015-0006.
Roesma DI, Tjong DH, Munir W, Aidil, DR (2018) New Record Species of Puntius (Pisces: Cyprinidae) from West Sumatra based on Cytochrome Oxi-dase1Gene. International Journal on Advanced Sci-ences, Engineering, and Information Technology 8 (1). doi: 10.18517/IJASEIT.8.1.4170.
Hebert PDN, Ratnasingham S, DeWaard JR (2003) Barcoding animal life: Cytochrome oxidase subunit 1 divergences among closely related species. Proceed-ings of the Royal Society: Biological Sciences 270 (1). doi: 10.1098/rsbl.2003.0025.
Decru E, Moelants T, De Gelas K, Vreven E, Verheyen E, Snoeks J (2016) Taxonomic challenges in fresh-water fishes: A mismatch between morphology and DNA barcoding in fish of the north‐eastern part of the Congo basin. Molecular Ecology Resources 16 (1): 342–352. doi: 10.1111/1755-0998.12445.
Farhana NS, Muchlisin ZA, Duong TY et al. (2018) Exploring hidden diversity in Southeast Asia’s Dermogenys spp. (Beloniformes: Zenarchopteridae) through DNA barcoding. Scientific Reports 8 (1). doi: 10.1038/s41598-018-29049-7.
Roesma DI, Tjong DH, Karlina W, Aidil DR (2019) Taxonomy confirmation of Puntius cf. Binotatus from Gunung Tujuh lake, Jambi, Indonesia based on cyto-chrome oxidase-I (COI) gene. Biodiversitas 20 (1): 54 – 60. doi: 10.13057/biodiv/d200107.
Fadli N, Mohd nor SA, Othman AS et al. (2020) DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia. PeerJ (8). doi: 10.7717/peerj.9641.
Panprommin D, Iamchuen N, Soontornprasit K, Tuncharoen S (2020) The utility of DNA barcoding for the species identification of larval fish in the low-ering river, Thailand. Turkish Journal of Fisheries and Aquatic Sciences 20 (9): 671–679. doi: 10.4194/1303-2712-v20_9_02.
Batubara AS, Muchlisin ZA, Efizon D et al. (2021) DNA barcoding (COI genetic marker) revealed hid-den diversity of Cyprinid fish (Barbonymus spp.) from Aceh Waters, Indonesia. BIHAREAN BIOLOGIST 15 (1). doi: http://biozoojournals.ro/bihbiol/index.html.
Roesma DI, Tjong DH, Janra MN, Aidil DR (2022) DNA barcoding of freshwater fish in Siberut Island, Mentawai Archipelago, Indonesia. Biodiversitas 23 (4): 1795 – 1806. doi: 10.13057/biodiv/d230411.
IUCN (2019) The IUCN Red List of Threatened Spe-cies. Version 2019-2. www.iucnredlist.org . Accessed date: 1 December 2022.
Dahruddin H, Sholihah A, Sukmono T et al. (2021) Revisiting the diversity of barbonymus (Cy-priniformes, Cyprinidae) in Sundaland using DNA-based species delimitation methods. Diversity 13 (7). doi: 10.3390/d13070283
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Phil-osophical Transactions of the Royal Society. Biological Sciences 360 (1462): 1847 – 1857. doi: 10.1098/rstb.2005.1716.
Burland TG (2000) Dnastar’s laser gene sequence analysis software. Methods in Molecular Biology 132: 71 - 91. doi: 10.1385/1-59259-192-2:71.
Larkin MA, Blackshields G, Brown NP et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23 (21): 2947 – 2948. doi: 10.1093/bioinformatics/btm404.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34 (12): 3299 – 3302. doi: 10.1093/molbev/msx248.
Kimura M (1980) Journal of Molecular Evolution a Simple Method for Estimating Evolutionary Rates of Base Substitutions Through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolu-tion 16. doi: 10.1007/bf01731581.
Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38 (7): 3022 – 3027. doi: 10.1093/molbev/msab120.
Domingues L (2017) PCR: Methods and Protocols. New York, Springer-Verlag.
Yan C, Duanmu X, Zeng L, Liu B, Song Z (2019) Mi-tochondrial DNA: distribution, mutations, and elimi-nation. Cells 8 (4): 379. doi: 10.3390/cells8040379.
Bingpeng X, Heshan L, Zhilan Z et al. (2018) DNA barcoding for identification of fish species in the Taiwan Strait. PLoS ONE 13 (6). doi: 10.1371/journal.pone.0198109.
Roesma DI, Tjong DH, Aidil DR (2020) Phylogenetic analysis of transparent gobies in three Sumatran lakes, inferred from mitochondrial cytochrome oxi-dase I (COI) gene. Biodiversitas 21(1): 43 – 48. doi: 10.13057/biodiv/d210107.
Aziz R, Sen P, Beura PK, Das S, Tula D, Dash M, Namsa ND, Deka RC, Feil EJ, Satapathy SS, Ray SK (2022) Incorporation of transition to transversion ratio and nonsense mutations improves the estima-tion of the number of synonymous and non-synonymous sites in codons. DNA Research 29 (4): dsac023. doi: 10.1093/dnares/dsac023.
Voris HK (2000) Maps of Pleistocene Sea Levels in Southeast Asia: Shorelines, River Systems And Time Durations. Journal of Biogeography 27: 1153 - 1167. doi: 10.1046/j.1365-2699.2000.00489.x.
Batubara AS, Muchlisin ZA, Efizon D et al. (2018) Morphometric variations of the Genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fisheries and Aquatic Life 26 (4): 231 – 237. doi: 10.2478/aopf-2018-0026.
Kartavtsev YP (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and ge-netics of speciation in animals. Mitochondrial DNA 22(3): 55 – 65. doi: 10.3109/19401736.2011.588215.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Tropical Life Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License