The Role of MicroRNAs in Chronic Myeloid Leukemia (CML) Treatment, Biomarkers, and Resistance to Tyrosine Kinase Inhibitor: A Bioinformatics-Based Analysis
Role of MicroRNAs in Chronic Myeloid Leukemia (CML) Treatment
DOI:
https://doi.org/10.11594/jtls.14.03.18Keywords:
bioinformatics, Chronic Myeloid Leukemia, microRNAAbstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by the reciprocal translocation of the BCR-ABL1 oncogene, which activates tyrosine kinase resulting in uncontrolled cell proliferation and apoptosis suppression. Although Imatinib (IM) is an effective treatment, IM resistance remains a significant concern. Therefore, microRNAs (miRNAs) have emerged as potential alternative therapies. These short, non-coding RNAs (20-22 nucleotides) regulate gene expression by binding to the 3' untranslated region (3'UTR) of target genes. The study aims to identify miRNAs linked to CML, determine miRNA’s target genes, construct a protein-protein interaction (PPI) network, and analyze pathways and gene ontology. A literature search using the keywords “microRNA”, and “chronic myeloid leukemia” yielded relevant papers, which were screened and categorized into three groups: 1) miRNA associated with TKI resistance, 2) miRNA as biomarkers or leukemogenesis, and 3) miRNA as therapy. Target genes for the identified miRNAs were determined using DIANA tools and miRTarBase. Gene ontology and pathway analysis were conducted using DAVID, while PPI and network visualization were performed using STRING, Cytoscape, and ClueGO. Thirteen miRNAs were selected, targeting 782 genes and forming 16 clusters. ClueGO identified clusters associated with key biological processes, including G1/S cell cycle transition, miRNA-mediated gene silencing, hematopoietic stem cell differentiation, and apoptosis regulation. Target genes are also significant in the CML pathway and other cancer pathways, such as p53, ErbB, FoxO, autophagy, apoptosis, VEGF, TNF, and microRNA. Notably, hsa-miR-16 emerged as the most promising therapeutic and biomarker candidate for CML, highlighting its role in critical pathways.
References
Shallis RM, Podoltsev N (2019) What is the best pharmacotherapeutic strategy for
treating chronic myeloid leukemia in the elderly? Expert Opinion on Pharmacotherapy 20(10):1169-73. doi: 10.1080/14656566.2019.1599357.
Iqbal N, Iqbal N (2014) Imatinib: a breakthrough of targeted therapy in cancer. Chemotherapy Re-search and Practice 2014:357027. doi: 10.1155/2014/357027.
Patel AB, O'Hare T, Deininger MW (2017) Mecha-nisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next-generation ABL kinase inhibitors. Hematolo-gy/Oncology Clinics 31(4):589-612. doi: 10.1016/j.hoc.2017.04.007.
Soverini S, Mancini M, Bavaro L, Cavo M, Martinelli G (2018) Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Molecular Cancer 17(1):49. doi: 10.1186/s12943-018-0780-65.
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS (2020) Advances in the discovery of mi-croRNA-based anticancer therapeutics: latest tools and developments. Expert Opinion on Drug Dis-covery 15(1):63-83. doi: 10.1080/17460441.2020.1690449.6.
Zhong C, Dong Y, Zhang Q, Yuan C, Duan S (2021) Aberrant expression of miR-1301 in human can-cer. Frontiers in Oncology 11:789626. doi: 10.3389/fonc.2021.789626.
Habib EM, Nosiar NA, Eid MA, Taha AM, Sherief DE, Hassan AE, et al. (2022) MiR-150 expression in chronic myeloid leukemia: relation to imatinib response. Laboratory Medicine 53(1):58-64. doi: 10.1093/labmed/lmab040.8. He J, Han Z, An Z, Li Y, Xie X,
He J, Han Z, An Z, Li Y, Xie X, Zhou J, et al. (2021) The miR-203a regulatory network affects the pro-liferation of chronic myeloid leukemia K562 cells. Frontiers in Cell and Developmental Biology 9:616711. doi: 10.3389/fcell.2021.616711.
Huang T, Fu Y, Wang S, Xu M, Yin X, Zhou M, et al. (2019) MiR-96 acts as a tumor suppressor via tar-geting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation. Biomedicine Pharmacotherapy 119:109413. doi: 10.1016/j.biopha.2019.109413.
Kotagama K, Chang Y, Mangone M (2015) MiRNAs as biomarkers in chronic myelogenous leukemia. Drug Development Research 76(6):278-85. doi: 10.1002/ddr.21266.
Jiang X, Cheng Y, Hu C, Zhang A, Ren Y, Xu X (2019) MicroRNA-221 sensitizes chronic myeloid leukemia cells to imatinib by targeting STAT5. Leukemia & Lymphoma 60(7):1709-20. doi: 10.1080/10428194.2018.1543875.
Ma J, Wu D, Yi J, Yi Y, Zhu X, Qiu H, et al. (2019) MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomedical Pharmacotherapy 112:108623. doi: 10.1016/j.biopha.2019.108623.
Srutova K, Curik N, Burda P, Savvulidi F, Silvestri G, Trotta R, et al. (2018) BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia. Haematologica 103(12):2016-25. doi: 10.3324/haematol.2018.193086.
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. (2022) DAVID: a web server for functional enrichment analysis and functional an-notation of gene lists (2021 update). Nucleic Acids Research 50(W1) doi: 10.1093/nar/gkac194.
Li H, Liu L, Zhuang J, Liu C, Zhou C, Yang J, et al. (2019) Identification of key candidate targets and pathways for the targeted treatment of leukemia stem cells of chronic myelogenous leukemia using bioinformatics analysis. Molecular Genetics & Ge-nomic Medicine 7(9). doi: 10.1002/mgg3.851.
Saiyed AN, Vasavada AR, Johar SK (2023) Employ-ing in silico investigations to determine the cross-kingdom approach for Curcuma longa miRNAs and their human targets. Beni-Suef University Journal of Basic and Applied Sciences 12(1):3.
Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY, et al. (2021) Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death and Disease 12(10). doi: 10.1038/s41419-021-04209-2.
Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, et al. (2011) Comprehensive network analysis of anther-expressed genes in rice by the combination of laser microdissection and spatio-temporal microarrays. PLoS One 6(10). doi: 10.1371/journal.pone.0026162.
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32(Database issue). doi:10.1093/nar/gkh036.
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Mor-ishima K (2017) KEGG: new perspectives on ge-nomes, pathways, diseases and drugs. Nucleic Ac-ids Research 45(D1). doi: 10.1093/nar/gkw1092.
Radhi KA, Matti BF, Hamzah IH (2023) The role of miRNA-96 and miRNA-150 between different BCR-ABL p210 transcript levels and between dif-ferent levels of imatinib optimal response in CML patients. Human Gene 36:201166.
Deng W, Chao R, Zhu S (2023) Emerging roles of circRNAs in leukemia and the clinical prospects: An update. Immunity, Inflammation and Disease 11(1). doi: 10.1002/iid3.725.
Rudich A, Garzon R, Dorrance A (2022) Non-Coding RNAs Are Implicit in Chronic Myeloid Leu-kemia Therapy Resistance. International Journal of Molecular Sciences 23(20). doi: 10.3390/ijms232012271.
Du J, Jia F, Wang L (2022) Advances in the study of circRNAs in hematological malignancies. Fron-tiers in Oncology 12:900374. doi: 10.3389/fonc.2022.900374.
da Silva SP, Caires HR, Bergantim R, Guimaraes JE, Vasconcelos MH (2022) miRNAs mediated drug resistance in hematological malignancies. Seminars in Cancer Biology 83:283-302. doi: 10.1016/j.semcancer.2021.03.014.
Balatti V, Croce CM (2022) Small non-coding RNAs in leukemia. Cancers (Basel) 14(3). doi: 10.3390/cancers14030509.
Elias MH, Mohamad SFS, Hamid NA (2022) A sys-tematic review of candidate miRNAs, its targeted genes, and pathways in chronic myeloid leuke-mia—an integrated bioinformatical analysis. Fron-tiers in Oncology 12:13. doi: 10.3389/fonc.2022.848199.
Najafi F, Kelaye SK, Kazemi B, Foruzandeh Z, Al-lahverdizadeh F, Vakili S, et al. (2022) The role of miRNA-424 and miR-631 in various cancers: focus-ing on drug resistance and sensitivity. Pathology-Research and Practice 239:154130.
Navabi A, Akbari B, Abdalsamadi M, Naseri S (2022) The role of microRNAs in the development, progression, and drug resistance of chronic mye-loid leukemia and their potential clinical signifi-cance. Life Sciences 296:120437. doi: 10.1016/j.lfs.2022.120437.
Zhu X, Zhang J, Sun Y, Wang Y, Liu Q, Li P, et al. (2022) Restoration of miR-23a expression by chidamide sensitizes CML cells to imatinib treat-ment with concomitant downregulation of CRYAB. Bioengineered 13(4):8881-92. doi: 10.1080/21655979.2022.2056322.
Tang BJ, Sun B, Chen L, Xiao J, Huang ST, Xu P (2022) The landscape of exosome-derived non-coding RNA in leukemia. Frontiers in Pharmacology 13:912303. doi: 10.3389/fphar.2022.912303.
Houshmand M, Kazemi A, Anjam Najmedini A, Ali MS, Gaidano V, Cignetti A, et al. (2021) Shedding light on targeting chronic myeloid leukemia stem cells. Journal of Clinical Medicine 10(24). doi: 10.3390/jcm10245805.
Mojtahedi H, Yazdanpanah N, Rezaei N (2021) Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Research & Therapy 12(1):603. doi: 10.1186/s13287-021-02659-1.
Al Hamad M (2021) Contribution of BCR-ABL mo-lecular variants and leukemic stem cells in re-sponse and resistance to tyrosine kinase inhibitors: a review. F1000Research 10:1288. doi: 10.12688/f1000research.74570.2.
Abdulmawjood B, Costa B, Roma-Rodrigues C, Bap-tista PV, Fernandes AR (2021) Genetic biomarkers in chronic myeloid leukemia: what have we learned so far? International Journal of Molecular Sciences 22(22). doi: 10.3390/ijms222212516.
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B, Majidinia M (2021) Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in can-cer. Life Sciences 285:119984.
Habib E, Nosiar N, Eid M, Taha A, Sherief D, Has-san A, et al. (2021) Circulating miR-146a expres-sion predicts early treatment response to imatinib in adult chronic myeloid leukemia. Journal of In-vestigative Medicine 69(2):333-7. doi: 10.1136/jim-2020-001563.
Anelli L, Zagaria A, Specchia G, Musto P, Albano F (2021) Dysregulation of miRNA in leukemia: ex-ploiting miRNA expression profiles as biomarkers. International Journal of Molecular Sciences 22(13). doi: 10.3390/ijms22137156.
Keramati F, Jafarian A, Soltani A, Javandoost E, Mollaei M, Fallah P (2021) Circulating miRNAs can serve as potential diagnostic biomarkers in chronic myelogenous leukemia patients. Leukemia Re-search Reports 16. doi: 10.1016/j.lrr.2021.100257.
Lu Y-H, Huang Z-Y (2021) Global identification of circular RNAs in imatinib (IM) resistance of chronic myeloid leukemia (CML) by modulating signaling pathways of circ_0080145/miR-203/ABL1 and circ_0051886/miR-637/ABL1. Molecular Medicine 27(1):148. doi: 10.1186/s10020-021-00395-z.
Luo J, Gao Y, Lin X, Guan X (2021) Systematic analysis reveals an lncRNA-miRNA-mRNA network associated with dasatinib resistance in chronic my-eloid leukemia. Annals of Palliative Medicine 10(2):1727-38. doi: 10.21037/apm-20-343.
Martins JRB, Moraes LN, Cury SS, Capannacci J, Carvalho RF, Nogueira CR, et al. (2021) MiR-125a-3p and miR-320b differentially expressed in pa-tients with chronic myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation and imatinib mesylate. International Journal of Molecular Sciences 22(19). doi: 10.3390/ijms221910216.
Yung Y, Lee E, Chu HT, Yip PK, Gill H (2021) Tar-geting abnormal hematopoietic stem cells in chron-ic myeloid leukemia and Philadelphia chromo-some-negative classical myeloproliferative neo-plasms. International Journal of Molecular Sciences 22(2). doi: 10.3390/ijms22020659.
Kaehler M, Cascorbi I (2021) Pharmacogenomics of impaired tyrosine kinase inhibitor response: les-sons learned from chronic myelogenous leukemia. Frontiers in Pharmacology 12:696960. doi: 10.3389/fphar.2021.696960.
Alves R, Goncalves AC, Rutella S, Almeida AM, De Las Rivas J, Trougakos IP, et al. (2021) Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia—from molecular mechanisms to clinical relevance. Cancers (Basel) 13(19). doi: 10.3390/cancers13194820.
Wong NK, Luo S, Chow EYD, Meng F, Adesanya A, Sun J, et al. (2021) The tyrosine kinase-driven networks of novel long non-coding RNAs and their molecular targets in myeloproliferative neoplasms. Frontiers in Cell and Developmental Biology 9:643043. doi: 10.3389/fcell.2021.643043.
Longjohn MN, Hudson JBJ, Smith NC, Rise ML, Moorehead PC, Christian SL (2021) Deciphering the messages carried by extracellular vesicles in hematological malignancies. Blood Reviews 46:100734. doi: 10.1016/j.blre.2020.100734.
He J, Han Z, An Z, Li Y, Xie X, Zhou J, et al. (2021) The miR-203a regulatory network affects the pro-liferation of chronic myeloid leukemia K562 cells. Frontiers in Cell and Developmental Biology 9. doi: 10.3389/fcell.2021.616711.
Lovat F, Gasparini P, Nigita G, Larkin K, Byrd JC, Minden MD, et al. (2021) Loss of expression of both miR-15/16 loci in CML transition to blast cri-sis. Proceedings of the National Academy of Sci-ences 118(11)
Zhou M, Yin X, Zheng L, Fu Y, Wang Y, Cui Z, et al. (2021) miR-181d/RBP2/NF-κB p65 feedback reg-ulation promotes chronic myeloid leukemia blast crisis. Frontiers in Oncology 11:654411.
Khalil NA, Desouky MN, Diab IH, Hamed NAM, Mannaa HF (2020) MicroRNA 30a mediated au-tophagy and imatinib response in Egyptian chronic myeloid leukemia patients. Indian Journal of He-matology and Blood Transfusion 36(3):491-7. doi: 10.1007/s12288-019-01241-3.
Martins JRB, de Moraes LN, Cury SS, Dadalto J, Capannacci J, Carvalho RF, et al. (2020) Compari-son of microRNA expression profile in chronic mye-loid leukemia patients newly diagnosed and treat-ed by allogeneic hematopoietic stem cell transplan-tation. Frontiers in Oncology 10. doi: 10.3389/fonc.2020.01544.
Xiao H, Liang S, Wang L (2020) Competing endog-enous RNA regulation in hematologic malignancies. Clinica Chimica Acta 509:108-16. doi: 10.1016/j.cca.2020.05.045.
AF N (2020) MicroRNAs expression profiles as biomarkers and therapeutic tools in Turkish pa-tients with chronic myeloid leukemia. Bratislava Medical Journal 121(6).
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, De-rakhshani A, Brunetti O, et al. (2020) MiR-144: a new possible therapeutic target and diagnos-tic/prognostic tool in cancers. International Journal of Molecular Sciences 21(7). doi: 10.3390/ijms21072578.
Cao HX, Miao CF, Sang LN, Huang YM, Zhang R, Sun L, et al. (2020) Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sciences 243:117255. doi: 10.1016/j.lfs.2020.117255.
Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. (2019) Chronic mye-loid leukemia stem cells. Leukemia 33(7):1543-56.
Alves R, Goncalves AC, Jorge J, Marques G, Luis D, Ribeiro AB, et al. (2019) MicroRNA signature re-fine response prediction in CML. Scientific Reports 9(1):9666. doi: 10.1038/s41598-019-46132-9.
Mirza MAB, Guru SA, Abdullah SM, Rizvi A, Saxena A (2019) MicroRNA-21 expression as prognostic and therapeutic response marker in chronic mye-loid leukemia patients. Asian Pacific Journal of Cancer Prevention 20(8):2379-83. doi: 10.31557/APJCP.2019.20.8.2379.
Muselli F, Peyron JF, Mary D (2019) Druggable biochemical pathways and potential therapeutic al-ternatives to target leukemic stem cells and elimi-nate the residual disease in chronic myeloid leu-kemia. International Journal of Molecular Sciences 20(22). doi: 10.3390/ijms20225616.
Lavrov AV, Chelysheva EY, Adilgereeva EP, Shu-khov OA, Smirnikhina SA, Kochergin-Nikitsky KS, et al. (2019) Exome, transcriptome and miRNA analysis don't reveal any molecular markers of TKI efficacy in primary CML patients. BMC Medical Ge-nomics 12(Suppl 2):37. doi: 10.1186/s12920-019-0481-z.
Zhang XT, Dong SH, Zhang JY, Shan B (2019) Mi-croRNA-577 promotes the sensitivity of chronic myeloid leukemia cells to imatinib by targeting NUP160. European Review for Medical and Phar-macological Sciences 23(16):7008-15. doi: 10.26355/eurrev_201908_18741.
Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H, et al. (2019) Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Applied Micro-biology and Biotechnology 103(23-24):9569-82. doi: 10.1007/s00253-019-10127-3.
Nie ZY, Yang L, Liu XJ, Yang Z, Yang GS, Zhou J, et al. (2019) Morin inhibits proliferation and induces apoptosis by modulating the MIR-188-5p/PTEN/Akt regulatory pathway in CML cells. Molecular Cancer Therapeutics 18(12):2296-307. doi: 10.1158/1535-7163.MCT-19-0051.
Wu H, Yin J, Ai Z, Li G, Li Y, Chen L (2019) Overex-pression of miR-4433 by suberoylanilide hydrox-amic acid suppresses growth of CML cells and in-duces apoptosis through targeting Bcr-Abl. Journal of Cancer 10(23):5671-80. doi: 10.7150/jca.34972.
Zhang J, Jiang Y, Han X, Roy M, Liu W, Zhao X, et al. (2019) Differential expression profiles and func-tional analysis of plasma miRNAs associated with chronic myeloid leukemia phases. Future Oncology 15(7):763-76. doi: 10.2217/fon-2018-0741.
Ferreira LAM, Capannacci J, Hokama NK, Nogueira CR, Ceccarelli M, Cerulo L, et al. (2019) Circulating microRNAs expression profile in newly diagnosed and imatinib treated chronic phase–chronic mye-loid leukemia. Leukemia & Lymphoma 60(3):805-11.
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, et al. (2019) Diag-nostic biomarker and therapeutic target applica-tions of miR-326 in cancers: a systematic review. Journal of Cellular Physiology 234(12):21560-74. doi: 10.1002/jcp.28782.
Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, et al. (2021) miRTargetLink 2.0—interactive miRNA target gene and target pathway networks. Nucleic Acids Research 49(W1). doi: 10.1093/nar/gkab297.
Xu P, Wu Q, Yu J, Rao Y, Kou Z, Fang G, et al. (2020) A systematic way to infer the regulation re-lations of miRNAs on target genes and critical miR-NAs in cancers. Frontiers in Genetics 11:278. doi: 10.3389/fgene.2020.00278.
Hu Q, Huang T (2023) Regulation of the cell cycle by ncRNAs affects the efficiency of CDK4/6 inhibi-tion. International Journal of Molecular Sciences 24(10):8939.
Shen N, Liu S, Cui J, Li Q, You Y, Zhong Z, et al. (2019) Tumor necrosis factor α knockout impaired tumorigenesis in chronic myeloid leukemia cells partly by metabolism modification and miRNA regulation. OncoTargets and Therapy 12:2355-64. doi: 10.2147/OTT.S197535.
Ninawe A, Guru SA, Yadav P, Masroor M, Samad-hiya A, Bhutani N, et al. (2021) miR-486-5p: a prognostic biomarker for chronic myeloid leuke-mia. ACS Omega 6(11):7711-8. doi: 10.1021/acsomega.1c00035.
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS (2016) MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 7(27):42683-97. doi: 10.18632/oncotarget.7977.
Jiang M, Zhang WW, Liu P, Yu W, Liu T, Yu J (2017) Dysregulation of SOCS-mediated negative feedback of cytokine signaling in carcinogenesis and its significance in cancer treatment. Frontiers in Immunology 8:70. doi: 10.3389/fimmu.2017.00070.
Liu YX, Wang L, Liu WJ, Zhang HT, Xue JH, Zhang ZW, et al. (2016) MiR-124-3p/B4GALT1 axis plays an important role in SOCS3-regulated growth and chemo-sensitivity of CML. Journal of Hematology & Oncology 9(1):69. doi: 10.1186/s13045-016-0300-3.
Croker BA, Kiu H, Nicholson SE (2008) SOCS regu-lation of the JAK/STAT signalling pathway. Semi-nars in Cell & Developmental Biology 19(4):414-22. doi: 10.1016/j.semcdb.2008.07.010.
Sobah ML, Liongue C, Ward AC (2021) SOCS pro-teins in immunity, inflammatory diseases, and im-mune-related cancer. Frontiers in Medicine 8:727987. doi: 10.3389/fmed.2021.727987.
Keewan E, Matlawska-Wasowska K (2021) The emerging role of suppressors of cytokine signaling (SOCS) in the development and progression of leukemia. Cancers (Basel) 13(16). doi: 10.3390/cancers13164000.
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, et al. (2024) JAK/STAT in leukemia: a clinical up-date. Molecular Cancer 23(1):25. doi: 10.1186/s12943-023-01929-1.
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, et al. (2018) Du-al inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Science Translational Medi-cine 10(436). doi: 10.1126/scitranslmed.aao3003.
Lahalle A, Lacroix M, De Blasio C, Cisse MY, Linares LK, Le Cam L (2021) The p53 pathway and me-tabolism: the tree that hides the forest. Cancers (Basel) 13(1). doi: 10.3390/cancers13010133.
Lama R, Xu C, Galster SL, Querol-Garcia J, Portwood S, Mavis CK, et al. (2022) Small molecule MMRi62 targets MDM4 for degradation and induces leuke-mic cell apoptosis regardless of p53 status. Fron-tiers in Oncology 12:933446. doi: 10.3389/fonc.2022.933446.
Carr RM, Vorobyev D, Lasho T, Marks DL, Tolosa EJ, Vedder A, et al. (2021) RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nature Communications 12(1):2901. doi: 10.1038/s41467-021-23186-w.
LeMaistre A, Lee MS, Talpaz M, Kantarjian HM, Freireich EJ, Deisseroth AB, et al. (1989) RAS on-cogene mutations are rare late-stage events in chronic myelogenous leukemia. Blood. doi: 10.1182/blood.V73.4.889.889.
Tanaka K, Takauchi K, Takechi M, Kyo T, Dohy H, Kamada N (1994) High frequency of RAS onco-gene mutation in chronic myeloid leukemia pa-tients with myeloblastoma. Leukemia & Lymphoma 13(3-4):317-22. doi: 10.3109/10428199409056296.
Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angio-genesis. Advanced Drug Delivery Reviews 63(8):610-5. doi: 10.1016/j.addr.2010.11.001.
Dahan S, Sharma A, Cohen K, Baker M, Taqatqa N, Bentata M, et al. (2021) VEGFA's distal enhancer regulates its alternative splicing in CML. NAR Can-cer 3(3). doi: 10.1093/narcan/zcab029.
Fiordi B, Salvestrini V, Gugliotta G, Castagnetti F, Curti A, Speiser DE, et al. (2023) IL-18 and VEGF-A trigger type 2 innate lymphoid cell accumulation and pro-tumoral function in chronic myeloid leu-kemia. Haematologica 108(9):2396-409. doi: 10.3324/haematol.2022.282140.
Kim DH, Xu W, Kamel-Reid S, Liu X, Jung CW, Kim S, et al. (2010) Clinical relevance of vascular endo-thelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy. Annals of On-cology 21(6):1179-88. doi: 10.1093/annonc/mdp452.
Song G, Li Y, Jiang G (2012) Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets. Oncology Reports 28(6):1935-44. doi: 10.3892/or.2012.2045.
Huang Y, Guo XX, Han B, Zhang XM, An S, Zhang XY, et al. (2017) Decoding the full picture of Raf1 function based on its interacting proteins. Onco-target 8(40):68329-37. doi: 10.18632/oncotarget.19353.
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta 1773(8):1263-84. doi: 10.1016/j.bbamcr.2006.10.001.
Mizuchi D, Kurosu T, Kida A, Jin Z-H, Jin A, Arai A, et al. (2005) BCR/ABL activates Rap1 and B-Raf to stimulate the MEK/Erk signaling pathway in hem-atopoietic cells. Biochemical and Biophysical Re-search Communications 326(3):645-51. doi: 10.1016/j.bbrc.2004.11.086.
Jena N, Deng M, Sicinska E, Sicinski P, Daley GQ (2002) Critical role for cyclin D2 in BCR/ABL-induced proliferation of hematopoietic cells. Can-cer Research 62(2):535-41.
Montalto FI, De Amicis F (2020) Cyclin D1 in can-cer: a molecular connection for cell cycle control, adhesion, and invasion in tumor and stroma. Cells 9(12):2648.
Alao JP (2007) The regulation of cyclin D1 degra-dation: roles in cancer development and the poten-tial for therapeutic intervention. Molecular Cancer 6:1-16.
Kulshrestha A, Suman S (2018) Common module analysis reveals prospective targets and mecha-nisms of pediatric adrenocortical adenoma and carcinoma. Oncology Letters 15(3):3267-72. doi: 10.3892/ol.2017.7646.
Tian L, Chen T, Lu J, Yan J, Zhang Y, Qin P, et al. (2021) Integrated protein-protein interaction and weighted gene co-expression network analysis un-cover three key genes in hepatoblastoma. Frontiers in Cell and Developmental Biology 9:631982. doi: 10.3389/fcell.2021.631982.
Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan AS, Prchal-Murphy M, Heller G, et al. (2015) CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 125(1):90-101. doi: 10.1182/blood-2014-06-584417.
Tadesse S, Yu M, Kumarasiri M, Le BT, Wang S (2015) Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle 14(20):3220-30. doi: 10.1080/15384101.2015.1084445.
Zeng F, Peng Y, Qin Y, Wang J, Jiang G, Feng W, et al. (2022) Wee1 promotes cell proliferation and imatinib resistance in chronic myeloid leukemia via regulating DNA damage repair dependent on ATM-gammaH2AX-MDC1. Cell Communication and Signaling 20(1):199. doi: 10.1186/s12964-022-01021-z.
Yan X, Gao M, Zhang P, Ouyang G, Mu Q, Xu K (2020) MiR-181a functions as an oncogene by regulating CCND1 in multiple myeloma. Oncology Letters 20(1):758-64. doi: 10.3892/ol.2020.11579.
Abdulmawjood B, Costa B, Roma-Rodrigues C, Bap-tista PV, Fernandes AR (2021) Genetic biomarkers in chronic myeloid leukemia: what have we learned so far? International Journal of Molecular Sciences 22(22). doi: 10.3390/ijms222212516.
Ghelli Luserna di Rora’ A, Iacobucci I, Martinelli G (2017) The cell cycle checkpoint inhibitors in the treatment of leukemias. Journal of Hematology & Oncology 10:1-14.
Di Stefano C, Mirone G, Perna S, Marfe G (2016) The roles of microRNAs in the pathogenesis and drug resistance of chronic myelogenous leukemia (Review). Oncology Reports 35(2):614-24. doi: 10.3892/or.2015.4456.
Navabi A, Akbari B, Abdalsamadi M, Naseri S (2022) The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sciences 296:120437. doi: 10.1016/j.lfs.2022.120437.
La Rocca G, King B, Shui B, Li X, Zhang M, Akat KM, et al. (2021) Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. Elife 10. doi: 10.7554/eLife.70948.
Lazzaretti D, Tournier I, Izaurralde E (2009) The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts inde-pendently of Argonaute proteins. RNA 15(6):1059-66. doi: 10.1261/rna.1606309.
Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Scho-ber W, et al. (2016) Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Science Translational Medicine 8(355):355ra117. doi: 10.1126/scitranslmed.aag1180.
Anusha, Dalal H, Subramanian S, V PS, Gowda DA, H K, et al. (2021) Exovesicular-Shh confers imatinib resistance by upregulating Bcl2 expres-sion in chronic myeloid leukemia with variant chromosomes. Cell Death & Disease 12(3):259. doi: 10.1038/s41419-021-03542-w.
Hata AN, Engelman JA, Faber AC (2015) The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discovery 5(5):475-87. doi: 10.1158/2159-8290.CD-15-0011.
Nebenfuehr S, Kollmann K, Sexl V (2020) The role of CDK6 in cancer. International Journal of Cancer 147(11):2988-95. doi: 10.1002/ijc.33054.
Quintas-Cardama A, Cortes J (2009) Molecular biology of BCR-ABL1-positive chronic myeloid leu-kemia. Blood 113(8):1619-30. doi: 10.1182/blood-2008-03-144790.
Hemann MT, Lowe SW (2006) The p53-Bcl-2 con-nection. Cell Death and Differentiation 13(8):1256-9. doi: 10.1038/sj.cdd.4401962.
Porazzi P, De Dominici M, Salvino J, Calabretta B (2021) Targeting the CDK6 dependence of Ph+ acute lymphoblastic leukemia. Genes 12(9). doi: 10.3390/genes12091355.
Bertoli C, Skotheim JM, de Bruin RA (2013) Con-trol of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology 14(8):518-28. doi: 10.1038/nrm3629.
Fassl A, Geng Y, Sicinski P (2022) CDK4 and CDK6 kinases: from basic science to cancer therapy. Sci-ence 375(6577). doi: 10.1126/science.abc1495.
Hume S, Dianov GL, Ramadan K (2020) A unified model for the G1/S cell cycle transition. Nucleic Ac-ids Research 48(22):12483-501. doi: 10.1093/nar/gkaa1002.
Engeland K (2022) Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation 29(5):946-60. doi: 10.1038/s41418-022-00988-z.
Topacio BR, Zatulovskiy E, Cristea S, Xie S, Tambo CS, Rubin SM, et al. (2019) Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma pro-tein's C-terminal helix. Molecular Cell 74(4):758-70.e4. doi: 10.1016/j.molcel.2019.03.020.
Di Croce L, Helin K (2013) Transcriptional regula-tion by Polycomb group proteins. Nature Structur-al & Molecular Biology 20(10):1147-55. doi: 10.1038/nsmb.2669.
Golbabapour S, Majid NA, Hassandarvish P, Hajre-zaie M, Abdulla MA, Hadi AH (2013) Gene silenc-ing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS 17(6):283-96. doi: 10.1089/omi.2012.0105.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Tropical Life Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License