Analysis of trnL- trnL- trnF Intergenic Spacer and matK Sequences Combined with Morphological Observations Showed Pucuk Seminyak from Riau is Champereia manillana var. manillana Merr.

trnL-trnL-trnF Intergenic Spacer and matK on Pucuk Seminyak

Authors

  • Dewi Indriyani Roslim Universitas Riau
  • Herman University of Riau
  • Deanne Yoshe Fidela Budiono University of Riau
  • Isa Endar Cahyati University of Riau
  • Wahyu Lestari University of Riau
  • Linda Novita Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN)
  • Arief Priyadi Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN)

DOI:

https://doi.org/10.11594/jtls.14.03.13

Keywords:

Champereia manillana var. manillana, DNA barcode, matK, morphology, pucuk seminyak, Riau, trnL-trnL-trnF intergenic spacer

Abstract

A taxonomic status of Pucuk Seminyak plant is still unclear. This plant has a fruit like Melinjo (Gnetum gnemon) fruit and is often classified as a member of Gnetaceae family. This study aims to determine the taxonomic status of Pucuk Seminyak from Riau using trnL-trnL-trnF intergenic spacer (IGS) and matK sequences. Methods included leaf samples from three individuals collected from the Kampar Regency, Riau Province, total DNA extraction, electrophoresis, polymerase chain reaction (PCR), and data analysis. The results showed that the trnL-trnL-trnF IGS DNA sequences from the three samples of Pucuk Seminyak were obtained 937 bp length, while the matK had a size of 775 bp. These sequences have been registered in GenBank with registration numbers OQ174512, OQ174513, and OQ174514 for trnL-trnL-trnF IGS, and OQ174525, OQ174526, and OQ174527 for matK. The highest similarity was found between Pucuk Seminyak and Champereia manillana with an identity value of 99.67% based on trnL-trnL-trnF IGS and 99.74% based on matK. BLASTn analysis by default settings and organism Champereia (taxid: 50116) resulted in hits on the Champereia genus of the Opiliaceae. Further phylogenetic analysis placed the study objects in the Champereia clade (bootstrap support 49 for trnL-trnL-trnF, 68 for matK, and 71 for concatenated sequences). Lastly, identification by morphological characters also confirmed that the specimen agreed with the description and identification key for C. manillana. The species is classified into two varieties: var. longistaminea and var. manillana. The former was distributed in Southwest China, and the latter was distributed in Malesia to India. Furthermore, the phylogenetic analysis separated the two varieties into different clades. Therefore, it can be concluded that our specimen of Pucuk Seminyak is identified as C. manillana var. manillana Merr. (Opiliaceae).

Author Biographies

  • Dewi Indriyani Roslim, Universitas Riau

    Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, 28293, Indonesia

  • Herman, University of Riau

    Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, 28293, Indonesia

  • Deanne Yoshe Fidela Budiono, University of Riau

    Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, 28293, Indonesia

  • Isa Endar Cahyati, University of Riau

    Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, 28293, Indonesia

  • Wahyu Lestari, University of Riau

    Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, 28293, Indonesia

  • Linda Novita, Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN)

    Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National

    Research and Innovation Agency (BRIN), Cibinong, West Java, 16911, Indonesia

  • Arief Priyadi, Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN)

    Research Center for Applied Botany, Research Organization for Life Sciences and Environment, National

    Research and Innovation Agency (BRIN), Cibinong, West Java, 16911, Indonesia

References

References

Denny, Wardani M, Susilo A (2021) Diversity and potential utilization of medicinal plants in Way Kam-bas National Park. IOP Conference Series: Earth and Environmental Science 914 (1): 012001. doi: 10.1088/1755-1315/914/1/012001.

Suryani E, Zulkarnain Z (2021) Inventarisasi Dan Karakterisasi Melinjo (Gnetum Gnemon) di Kota So-lok. Menara Ilmu. doi: 10.31869/mi.v15i2.2594

Wahyuni S, Ramadansur R (2021) Etnobotani Tum-buhan Pangan Pada Masyarakat Suku Melayu Di De-sa Cipang Kiri Hulu Kecamatan Rokan IV Koto Ka-bupaten Rokan Hulu Provinsi Riau. Bio-Lectura: Jurnal Pendidikan Biologi 8 (2): 174–179. doi: 10.31849/bl.v8i2.7986.

Simpson MG (2019) Plant systematics. 3rd ed. Mas-sachusetts, Academic press.

Vu D, Groenewald M, De Vries M et al. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in mycology 92 (1): 135–154. doi: 10.1016/j.simyco.2018.05.001.

Roslim DI, Herman H (2017) Application of rps16 Intron and trnL-trnF Intergenic Spacer Sequences to Identify Rengas Clone Riau. Biosaintifika: Journal of Biology & Biology Education 9 (2): 209–216. doi: 10.15294/biosaintifika.v9i2.9108.

Kress WJ (2017) Plant DNA barcodes: Applications today and in the future. Journal of Systematics and Evolution 55 (4): 291–307. doi: 10.1111/jse.12254.

de Boer H, Rydmark MO, Verstraete B, Gravendeel B (2022) Molecular identification of plants: From se-quence to species. Advanced Books 1 e98875. doi: 10.3897/ab.e98875.

Roslim DI, Herman H, Putri SR et al. (2023) Verifica-tion of Maman (Cleome gynandra (L.) Briq.) from Riau Based on matK and trnL-trnL-trnF Intergenic Spacer. Biosaintifika: Journal of Biology & Biology Education 15 (3): 10. doi: 10.15294/biosaintifika.v15i3.46937.

Buerki S, Gallaher T, Booth T et al. (2016) Bio-geography and evolution of the screw-pine genus Benstonea Callm. & Buerki (Pandanaceae). Can-dollea 71 (2): 217–229. doi: 10.15553/c2016v712a8.

Herman, H Al-Khairi, AR Wansyah et al. (2023) The ability of matK and trnL-trnL-trnF inter-genic spacer to discern certain species accessions of the families Solanaceae and Fabaceae. SABRAO Journal of Breeding and Genetics 55 (1): 97–106. doi: 10.54910/sabrao2023.55.1.9.

Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phyloge-netic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94 (3): 275–288. doi: 10.3732/ajb.94.3.275.

Senjaya SK, Wulansari TYI, Astuti IP (2021) DNA barcode of wild averrhoaand interspecific rela-tionship of the genus Averrhoa inferred from nucle-ar internal transcribed spacer and trnL-F regions. Buletin Kebun Raya 24 (1): 42–50. doi: 10.14203/bkr.v24i1.706.

Roslim DI (2017) Identification of pandan plant (Benstonea sp.) from Riau, Indonesia using three DNA barcodes. SABRAO Journal of Breeding & Genetics 49 (4): 346–360.

Wangiyana IGAS (2020) DNA Barcoding Li-brary Database of Aquilaria Member and Gyrinops Member. Jurnal Silva Samalas 3 (2): 68–75. doi: 10.33394/jss.v3i2.3693.

Retnoningsih A, Megia R, Hartana A (2014) Phylogenetic relationships of indonesian banana cul-tivars inffered from trnl-f intergenic spacer of chlo-roplast dna. Floribunda 4 (8): 202–211. doi: 10.32556/floribunda.v4i8.2014.116.

Sen F, Uncu AO, Uncu AT, Erdeger SN (2020) The trnL (UAA)-trnF (GAA) intergenic spacer is a robust marker of green pea (Pisum sativum L.) adul-teration in economically valuable pistachio nuts (Pis-tacia vera L.). Journal of the Science of Food and Ag-riculture 100 (7): 3056–3061. doi: 10.1002/jsfa.10336.

Ahmed SS, Rahman MO, Ali MA et al. (2023) Molecular phylogenetics and dating of arecaceae in Bangladesh inferred from matk and rbcL genes. Bangladesh Journal of Plant Taxonomy 30 (2): 213–232. doi: 10.3329/bjpt.v30i2.70498.

Kar P, Goyal A, Sen A (2015) Maturase K Gene in Plant DNA Barcoding and Phylogenetics. In: Ali MA, Gábor G, Al-Hemaid F eds Plant DNA Barcoding Phylogenetics. London, Lambert Academic Publish-ing. pp 79–90.

Hernández-Godínez F, Jáuregui-González M de J, Martínez O et al. (2022) Phylogeny, origin and di-versification of the Dasylirion genus based on matK and rbcL sequences. Plant Genetic Resources: Char-acterization and Utilization 20 (2): 108–115. doi: 10.1017/S1479262122000181.

Ho VT, Tran TKP, Vu TTT, Widiarsih S (2021) Comparison of matK and rbcL DNA barcodes for ge-netic classification of jewel orchid accessions in Vi-etnam. Journal of Genetic Engineering and Biotech-nology 19 (1): 93. doi: 10.1186/s43141-021-00188-1.

Alaklabi A, Ahamed A, Al Qthanin RN et al. (2021) Molecular characterization of endangered endemic plant Aloe pseudorubro violacea using chlo-roplast matK and plastid rbcL gene. Saudi Journal of Biological Sciences 28 (1): 1123–1127. doi: 10.1016/j.sjbs.2020.11.042.

Kim WJ, Ji Y, Choi G et al. (2016) Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences. Genetics and Molecular Research 15 (3): 1–12. doi: 10.4238/gmr.15038472.

Enan MR, Ahamed A (2014) DNA barcoding based on plastid matK and RNA polymerase for as-sessing the genetic identity of date (Phoenix dac-tylifera L.) cultivars. Genetics and Molecular Re-search 13 (2): 3527–3536. doi: 10.4238/2014.February.14.2.

Tanaka S, Ito M (2020) DNA barcoding for identification of agarwood source species using trnL-trnF and matK DNA sequences. Journal of Natural Medicines 74 (1): 42–50. doi: 10.1007/s11418-019-01338-z.

Sulistyo BP, Boos R, Cootes JE, Gravendeel B (2015) Dendrochilum hampelii (Coelogyninae, Epi-dendroideae, Orchidaceae) traded as ‘Big Pink’ is a new species, not a hybrid: evidence from nrITS, matK and ycf1 sequence data. PhytoKeys 56 83–97. doi: 10.3897/phytokeys.56.5432.

Retnaningati D (2019) Hubungan Filogenetik Intraspesies Cucumis melo L. berdasarkan DNA Bar-code Gen matK. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati 2 (2): 62–67. doi: 10.24002/biota.v2i2.1658.

Manurung J, Prakasa H, Tanjung UJ, Harsono T (2018) Hubungan kekerabatan spesies dalam genus Zanthoxylum menggunakan sekuen gen maturase K (matK) DNA Kloroplas. Jurnal Biosains 4 (2): 69–77.

Heckenhauer J, Barfuss MHJ, Samuel R (2016) Universal multiplexable matK primers for DNA bar-coding of angiosperms. Applications in Plant Scienc-es 4 (6): 1500137. doi: 10.3732/apps.1500137.

Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38 (7): 3022–3027. doi: 10.1093/molbev/msab120.

Kozlov AM, Darriba D, Flouri T et al. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioin-formatics 35 (21): 4453–4455. doi: 10.1093/bioinformatics/btz305.

Darriba D, Posada D, Kozlov AM et al. (2020) ModelTest-NG: A New and Scalable Tool for the Se-lection of DNA and Protein Evolutionary Models. Mo-lecular Biology and Evolution 37 (1): 291–294. doi: 10.1093/molbev/msz189.

Rambaut A (2009) FigTree. Tree figure draw-ing tool. Httptree Bio Ed Ac Uksoftwarefigtree

Hiepko P (1984) Opiliaceae. Flora Malesiana-Series 1, Spermatophyta 10 (1): 31–52.

Qiu H, Hiepko P (2003) Opiliaceae. In: Wu Z, Raven PH, Hong D eds Flora China Vol. 5 Ulmaceae Basellaceae. Beijing, Science Press. pp 205–207.

Borsch T, Quandt D (2009) Mutational dynam-ics and phylogenetic utility of noncoding chloroplast DNA. Plant Systematics and Evolution 282 (3): 169–199. doi: 10.1007/s00606-009-0210-8.

Won H, Renner SS (2005) The Chloroplast trnT–trnF Region in the Seed Plant Lineage Gnetales. Journal of Molecular Evolution 61 (4): 425–436. doi: 10.1007/s00239-004-0240-3.

Le C-T, Liu B, Barrett RL et al. (2018) Phyloge-ny and a new tribal classification of Opiliaceae (San-talales) based on molecular and morphological evi-dence. Journal of Systematics and Evolution 56 (1): 56–66. doi: 10.1111/jse.12295.

Barthet MM, Pierpont CL, Tavernier E-K (2020) Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision. Plant Direct 4 (3): e00208. doi: 10.1002/pld3.208.

Udensi OU, Ita EE, Ikpeme EV et al. (2017) Sequence analysis of maturase K (MatK): a chloro-plast-encoding gene in some selected pulses. Global Journal of Pure and Applied Sciences 23 (2): 213–230. doi: 10.4314/gjpas.v23i2.2.

Suhesti E, Hidayat RR, Insusanty E (2022) Potensi dan Jenis Hasil Hutan Bukan Kayu di Desa Merangin Kawasan Cagar Alam Bukit Bungkuk Riau. Jurnal Karya Ilmiah Multidisiplin (JURKIM) 2 (2): 146–156. doi: 10.31849/jurkim.v2i2.9732.

Priyadi A, Wibawa IPAH (2024) Contributions of Indonesian biosphere reserves to in-situ conser-vation of a rare folk medicinal plant Euchresta hors-fieldii (fabaceae). AIP Conference Proceedings 3001 (1): 080056. doi: 10.1063/5.0183880.

Kongkachuichai R, Charoensiri R, Yakoh K et al. (2015) Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chemistry 173 838–846. doi: 10.1016/j.foodchem.2014.10.123.

Aweng ER, Jessuta J, Prawit K, Liyana AA (2015) Potential of the concoction of Champereia manillana and Psidium guajava shoot extracts as co-agulant for drinking water treatment. Malay Nat J 67 419–426.

Ragasa CY, Ng VAS, Ulep RA et al. (2015) Chemical constituents of Champereia manillana (Blume) Merrill. Pharm Lett 7 (7): 256–261.

Chou FuShan CF, Liao ChunKuei LC, Yang YuenPo YY (2007) Classification and ordination of evergreen broad-leaved forest in the middle and upper watershed of the Nan-Tze-Shian stream in southwestern Taiwan.

Corlett RT (1991) Plant Succession on Degrad-ed Land in Singapore. Journal of Tropical Forest Sci-ence 4 (2): 151–161.

Downloads

Published

2024-10-18

Issue

Section

Articles