Genomic and Haplotype Comparison of Butanol Producing Bacteria Based on 16S rDNA

Ekwan Nofa Wiratno, Suharjono Suharjono, Agustin Krisna Wardani

Abstract


High butanol demand for transportation was support to butanol development. Exploration of butanol producing bacteria using genome comparison and biogeography give role to butanol industrialization. Objective of this research are butanol production, genome comparison and haplotype analysis of butanol producing bacteria from Ranu Pani Lake sediment using 16S rDNA sequences. Highest butanol concentrations were resulted by Paenibacillus polymyxaRP 2.2 isolate (10.34 ± 0.00 g.l-1) then Bacillusmethylotrophicus RP 3.2 and Bacillusmethylotrophicus RP 7.2 isolate (10.11 ± 0.01 g.l-1 and 9.63 ± 0.01 g.l-1). Number of bases (T, C, A, G) of group 1 are similar, but different with group 2. Least G+C content is Clostridium saccharobutylicum Ox29 (51.35%) and highest is Bacillus methylotrophicus RP 7.2. Conserve region (1044 bp) of 16S rDNA higher then variative region (367 bp). The number of 319 bp is PIS whereas single tone as much as 48 bp. There are 17 conserves sequences. All of butanol producing bacterial sequences was clustered to 8 haplotype. Based on source of bacteria, there are three group of haplotype. Group A was isolated from Asia, group B was isolated from America and group C was isolated from Europe.


Full Text:

PDF

References


Pfromm, P. H., V. A. Boadu, R. Nelson, P. Vadlani & R. Madl (2009) Bio-butanol vs. bioethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 34: 515-524.

Dϋrre, P. (2008) Fermentative butanol production bulk chemical and biofuel. Annals of the New York Academy of Sciences 1125: 353-362.

Eastman, W. A., B. Weselowski, N. Nathoo, Z. C. Yuan (2014) Complete genome sequence of Paenibacillus polymyxa CR1, a plant growth-promoting bacterium isolated from the corn rhizosphere exhibiting potential for biocontrol, biomass degradation, and biofuel production. Genome Announcements 2(1): e01218-13.

El-Hadi, D., Z. Zheng & C. Dong (2014) Aerobic production of butanol with Bacillus amyloliquefaciens NELB-12. Applied Mechanics and Materials 473: 1005-110.

Bayer, E. A., R. Lamed, B. A. White & H. J. Flint (2008) From cellulosomes to cellulosomics. The Chemical Record 8: 364-377.

Ng, C. Y. C., K.Takahashi & Z. Liu (2015) Isolation, characterization, and optimization of an aerobic butanol producing bacterium from Singapore”. Biotechnology and Applied Biochemistry 1343: 1-20.

Bull, A. T. (ed). (2003) Microbial Diversity and Bioprospecting. ASM Press. Washington DC.

Ambarsari, H. & K. Sonomoto (2013) Production of Acetone, Butanol, and as Bioenergy Source materials by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using Different Substrates. Microbiology Indonesia 7 (3): 113-123.

Ausubel, F. M., Brent, R. E., Kingston, D. D., Moore, J. G., Seidman, J. A., Smith & Struht (1995) Short Protocol in Molecular Biology. Willey. New York.

Turner, S., K. M. Pryer, V. P. W. Miao & J. D. Palmer (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46: 327–338.

Liu, F. H., S. B. Wang, J. S. Zhang, J. Zhang, X. Yan, H. K. Zhou, G. P. Zhao & Z. H. Zhou (2009) The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. Journal of Applied Microbiology 106: 952–966.

Al-Shorgani, N. K. N., M. S. Kalil & W. M. W. Yusoff (2011) The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum N1-4. Biotechnology 10 (3): 280-285.

Berezinaa, O. V., A. Brandtb, S. Yarotskya, W. H. Schwarzb & V. V. Zverlov (2009) Isolation of a new butanol-producing Clostridium strain: High level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate. Systematic and Applied Microbiology 32: 449–459.

Lee, J., Y. S. Jang, S. J. Choi, J. A. Im, H. Song, J. H. Cho & Y. D. Seung, E. T. Papoutsakis, G. N. Bennett & S. Y. Lee (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Applied and Environmental Microbiology 78: 1416–1423.

Eastman, W. A., D. E. Heinrichs & Z. C. Yuan (2014) Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genomics 15 (851): 1471-2164.

Raza, W., J. Yuan, N. Ling, Q. Huang & Q. Shen (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biological Control 80 : 89–95.

Foerstner KU, von Mering C, Hooper SD, Bork P. (2005) Environments shape the nucleotide composition of genomes. EMBO Rep 6:1208-1213.

Bassler, B & M. B. Miller (2006) Quorum sensing. in M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. The Prokaryotes: ecophysiology and biochemistry, third edition. Springer science. Singapore.

Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P.J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley (2006) Microbial biogeography: putting microorganisms on the map. Nature Reviews 4: 102-112.




DOI: http://dx.doi.org/10.11594/jtls.06.01.01

Copyright (c) 2016 Journal of Tropical Life Science