Genome-wide investigation and characterization of heat shock transcription factors in papaya (Carica papaya)

Mining of the HSF transcription factor in papaya

Authors

DOI:

https://doi.org/10.11594/jtls.14.03.02

Keywords:

Carica papaya, characteristic, gene expression, genome-wide identification, heat shock transcription factor

Abstract

Heat shock transcription factors (Hsf-s) have been considered one of the major regulatory proteins that play important roles in various biological processes during the growth and development of plants. Unfortunately, no comprehensive studies of the Hsf family in papaya (Carica papaya), a popular tropical fruit crop, have been performed, even the papaya genome assembly has been released recently. In this study, a total of 18 members of the Hsf family, namely CpHsf-s have been identified in papaya. Based on various computational tools, a systematic characterization of the CpHsf family, such as gene structure, physic-chemical features, categorization, and protein-protein interaction, has been conducted. We found that the physic-chemical properties of the CpHsf proteins were highly variable, while all proteins were hydrophilic and localized in the nucleus. Our classification indicated that the CpHsf proteins could be categorized into three groups, including HsfA, HsfB, and HsfC, and members in the same clade share similar gene structure. According to the previous RNA-Seq datasets, our re-analysis revealed that the CpHsf genes exhibited different expressions in various major organs or tissues during fruit ripening and under the ultra-low temperature stress. Taken together, our study could provide a list of candidate genes for further functional characterization towards the improvement of stress tolerance in papaya.

References

Sugiharto S (2020) Papaya (Carica papaya L.) seed as a potent functional feedstuff for poultry - A review. Veterinary world.;13(8):1613-9. doi: 10.14202/vetworld.2020.1613-1619.

Saeed F, Arshad MU, Pasha I, et al. (2014) Nutritional and phyto-therapeutic potential of papaya (Carica papaya Linn.): An Overview. International Journal of Food Properties. 17(7):1637-53. doi: 10.1080/10942912.2012.709210.

Santis LPD, Garcia PC, Secco VNDP, et al. (2019) Applicability of papain solutions in immunohematology. Einstein. 17(2): eAO4328-eAO. doi: 10.31744/einstein_journal/2019AO4328.

Jeyakumar P, Mathiyazhagan K, Kumar N, et al. (2007) Physiological performance of papaya cultivars under abiotic stress conditions. Acta Horticulturae. 740:209-15. doi: 10.17660/ActaHortic.2007.740.25.

Okunlola G (2013) Effect of prior heat stress on the early growth of Carica papaya. Notulae Scientia Biologicae. 5:508-512. doi: 10.15835/nsb.5.4.9149.

Janni M, Gullì M, Maestri E, et al. (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany. 71(13): 3780-3802. doi: 10.1093/jxb/eraa034.

Ming R, Hou S, Feng Y, et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 452(7190): 991-996. doi: 10.1038/nature06856.

Guo M, Liu J-H, Ma X, et al. (2016) The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Frontiers in Plant Science. 7(114): 114. doi: 10.3389/fpls.2016.00114.

Nover L, Bharti K, Döring P, et al. (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones. 6(3): 177-189. doi: 10.1379/1466-1268.

Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, et al. (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Journal of Genetics and Genomics. 35(2):105-18. doi: 10.1016/s1673-8527(08)60016-8.

Wang C, Zhang Q, Shou H-x (2009) Identification and expression analysis of OsHsfs in rice. Journal of Zhejiang University Science B. 10(4): 291-300. doi: 10.1631/jzus.B0820190.

Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, Cheng BJ (2011) Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics. 12: 76. doi: 10.1186/1471-2164-12-76.

Wang F, Dong Q, Jiang H, Zhu S, Chen B, Xiang Y (2012) Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Mol Biol Rep. 39(2): 1877-86. doi: 10.1007/s11033-011-0933-9.

Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. Journal of Genetics and Genomics. 40(3): 127-35. doi: 10.1016/j.jgg.2012.12.002.

Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, et al. (2014) Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics. 15: 1009. doi: 10.1186/1471-2164-15-1009.

Qiao X, Li M, Li L, Yin H, Wu J, Zhang S (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology. 15: 12. doi: 10.1186/s12870-014-0401-5.

Lin Q, Jiang Q, Lin J, Wang D, Li S, Liu C, et al. (2015) Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. Gene. 559(2): 129-136. doi: 10.1016/j.gene.2015.01.024.

Yang X, Zhu W, Zhang H, Liu N, Tian S (2016) Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. PeerJ. 4:e1961. doi: 10.7717/peerj.1961.

Wang Y, Dai Y, Tao X et al. (2016) Heat shock factor genes of tall fescue and Perennial Ryegrass in response to temperature stress by RNA-Seq analysis. Frontiers in Plant Science. 6: 1226. doi: 10.3389/fpls.2015.01226.

Wei Y, Hu W, Xia F, Zeng H, Li X, Yan Y et al. (2016) Heat shock transcription factors in banana: Genome-wide characterization and expression profile analysis during development and stress response. Scientific Reports. 6(1): 36864. doi: 10.1038/srep36864.

Deng X, Wang J, Wang J, Tian W (2018) Two HbHsfA1 and HbHsfB1 genes from the tropical woody plant rubber tree confer cold stress tolerance in Saccharomyces cerevisiae. Brazilian Journal of Botany. 41(3): 711-724. doi: 10.1007/s40415-018-0485-5.

Liu G, Chai F, Wang Y et al. (2018) Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Horticultural Plant Journal. 4(4): 133-143. doi: 10.1016/j.hpj.2018.06.001.

Liu M, Huang Q, Sun W et al. (2019) Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum). BMC genomics. 20(1): 871. doi: 10.1186/s12864-019-6205-0.

Duan S, Liu B, Zhang Y, Li G, Guo X (2019) Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. BMC Genomics. 20(1): 257. doi: 10.1186/s12864-019-5617-1.

Zhou M, Zheng S, Liu R et al. (2019) Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics. 20(1): 505. doi: 10.1186/s12864-019-5876-x.

Ye J, Yang X, Hu G et al. (2020) Genome-Wide Investigation of Heat Shock Transcription Factor Family in Wheat (Triticum aestivum L.) and Possible Roles in Anther Development. International journal of molecular sciences. 21(2): 608. doi: 10.3390/ijms21020608.

Shen C, Yuan J (2020) Genome-wide characterization and expression analysis of the heat shock transcription factor family in pumpkin (Cucurbita moschata). BMC Plant Biology. 20(1): 471. doi: 10.1186/s12870-020-02683-y.

Goodstein DM, Shu S, Howson R et al. (2012) Phytozome: A comparative platform for green plant genomics. Nucleic Acids research. 40(Database issue): D1178-D1186. doi: 10.1093/nar/gkr944.

Mistry J, Chuguransky S, Williams L et al. (2021) Pfam: The protein families database in 2021. Nucleic Acids Research. 49(D1): D412-D419. doi: 10.1093/nar/gkaa913.

Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics. 2: 2.3. 2.3.1-2.3.22. doi: 10.1002/0471250953.bi0203s00.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 35(6): 1547-1549. doi: 10.1093/molbev/msy096.

Chu HD, Nguyen KH, Watanabe Y, Le DT, Pham TLT, Mochida K, et al. (2018) Identification, structural characterization and gene expression analysis of members of the Nuclear Factor-Y family in chickpea (Cicer arietinum L.) under dehydration and abscisic acid treatments. International Journal of Molecular Sciences. 19(11): 3290. doi: 10.3390/ijms19113290.

Niu L, Chu HD, Tran CD et al. (2020) The GATA gene family in chickpea: Structure analysis and transcriptional responses to abscisic acid and dehydration treatments revealed potential genes involved in drought adaptation. Journal of Plant Growth Regulation. 39(4): 1647-60. doi: 10.1007/s00344-020-10201-5.

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research. 31(13): 3784-8. doi: 10.1093/nar/gkg563.

Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering. 4(2): 155-61. doi: 10.1093/protein/4.2.155.

Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol. 157(1):105-32. doi: 10.1016/0022-2836(82)90515-0.

Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols. 2(4):953-971. doi: 10.1038/nprot.2007.131.

Almagro Armenteros JJ, Salvatore M et al. (2019) Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance. 2(5): e201900429. doi: 10.26508/lsa.201900429.

Franceschini A, Szklarczyk D, Frankild S et al. (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 41(Database issue): D808-D815. doi: 10.1093/nar/gks1094.

Gotz S, Garcia-Gomez JM et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research. 36(10): 3420-3435. doi: 10.1093/nar/gkn176.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. (2013) NCBI GEO: Archive for functional genomics data sets--update. Nucleic acids research. 41(Database issue): D991-5. doi: 10.1093/nar/gks1193.

Lü P, Yu S, Zhu N et al. (2018) Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature plants. 4(10): 784-791. doi: 10.1038/s41477-018-0249-z.

Wahhab, B. H., Oyewusi, H. A., Wahab, R. A., et al. (2023). Comparative modeling and enzymatic affini-ty of novel haloacid dehalogenase from Bacillus megaterium strain BHS1 isolated from alkaline Blue Lake in Turkey. Journal of Biomolecular Structure and Dynamics, 1-14. doi: 10.1080/07391102.2023.2199870.

Gao Y, Zhu N, Zhu X, Wu M, Jiang C-Z, Grierson D, et al. (2019) Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Horticulture Research. 6(39). doi: 10.1038/s41438-019-0122-x.

Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol. 11(12): 848. doi: 10.15252/msb.20156351.

Zhang Y, Gao P, Yuan JS (2010) Plant protein-protein interaction network and interactome. Current Genomics. 11(1): 40-46. doi: 10.2174/138920210790218016.

Usman MG, Rafii MY (2017) Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnology and Genetic Engineering Reviews 33(1): 26-39. doi: 10.1080/02648725.2017.1340546.

Jiannan C, Hongyi F, Zixian L, Huanying Q, Lei Z, Zibiao G (1997) Effect of HSP70 antisense RNA on normal sorghum pollen formation. Chinese Science Bulletin. 42(23): 1990-1994. doi: 10.1007/BF02883201.

Sarkar NK, Kundnani P, Grover A (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress & Chaperones. 18(4): 427-37. doi: 10.1007/s12192-012-0395-6.

Huang B, Huang Z, Ma R, Chen J, Zhang Z, Yrjälä K (2021) Genome-wide identification and analysis of the heat shock transcription factor family in moso bamboo (Phyllostachys edulis). Scientific Reports. 11(1): 16492. doi: 10.1038/s41598-021-95899-3.

von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends in Plant Science. 12(10): 452-457. doi: 10.1016/j.tplants.2007.08.014.

Hwang SM, Kim DW, Woo MS et al. (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant, Cell & Environment. 37(5): 1202-1222. doi: 10.1111/pce.12228.

Huang Y-C, Niu C-Y, Yang C-R, Jinn T-L (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology. 172(2): 1182-1199. doi: 10.1104/pp.16.00860.

Song C, Chung WS, Lim CO (2016) Overexpression of heat shock factor gene HsfA3 increases galactinol levels and oxidative stress tolerance in Arabidopsis. Molecules and Cells. 39(6): 477-483. doi: 10.14348/molcells.2016.0027.

Charng YY, Liu HC et al. (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology. 143(1): 251-262. doi: 10.1104/pp.106.091322.

Wenjing W, Chen Q (2020) CRISPR/Cas9 edited HSFA6a and HSFA6b of Arabidopsis thaliana offers ABA and osmotic stress insensitivity by modulation of ROS homeostasis. Plant Signaling & Behavior. 15(12):1816321. doi: 10.1080/15592324.2020.1816321.

Downloads

Published

2024-09-19

Issue

Section

Articles