Genome-Wide Analysis of GATA Transcription Factor Family in Quinoa (Chenopodium quinoa): Identification, Characterization, and Expression Profiles
Genome Survey of the GATA Transcription Factor in Quinoa
DOI:
https://doi.org/10.11594/jtls.14.02.02Keywords:
Characterization, expression pattern, GATA transcription factor, identification, quinoaAbstract
GATA-binding factor (GATA) proteins are the transcription factor (TF) family that are commonly involved in plant growth and development. The GATA TF family has been successfully identified and characterized for various higher plant species, but there is little research on the GATA TF family in quinoa (Chenopodium quinoa). In this present study, a total of 32 CqGATA genes were identified and analyzed in the quinoa genome. While the general features of the CqGATA TFs in quinoa were slightly variable, the majority of genes encoding the CqGATA TFs contained two and three exons. Our phylogenetic analysis demonstrated that the CqGATA TFs could be classified into four different groups. Gene expression analysis indicated that the expression profiles of the CqGATA genes varied in different tissues. Overall, our study could provide a reference for further functional characterization of the CqGATA genes in quinoa.
References
Bazile D, Jacobsen SE, Verniau A (2016) The global expansion of Quinoa: Trends and limits. Frontiers in plant science 7: 622. doi: 10.3389/fpls.2016.00622.
Angeli V, Miguel Silva P (2020) Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the "Golden grain" and socio-economic and environmental aspects of its cultivation and marketization. Foods 9 (2): 216. doi: 10.3390/foods9020216.
Lin PH, Chao YY (2021) Different drought-tolerant mechanisms in quinoa (Chenopodium quinoa Willd.) and djulis (Chenopodium formosanum Koidz.) based on physiological analysis. Plants (Basel) 10 (11): 2279. doi: 10.3390/plants10112279.
Hinojosa L, González JA, Barrios-Masias FH et al. (2018) Quinoa abiotic stress responses: A review. Plants 7 (4): 106. doi: 10.3390/plants7040106.
Pathan S, Siddiqui RA (2022) Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) Greens: A review. Nutrients 14 (3): 558. doi: 10.3390/nu14030558.
Pereira E, Encina-Zelada C, Barros L et al. (2019) Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food chemistry 280: 110-4. doi: 10.1016/j.foodchem.2018.12.068.
Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Current opinion in plant biology 5 (5): 430-6. doi: 10.1016/s1369-5266(02)00289-3.
Schwechheimer C, Schroder PM, Blaby-Haas CE (2022) Plant GATA factors: Their biology, phylogeny, and phylogenomics. Annual Review of Plant Biology 73: 123-48. doi: 10.1146/annurev-arplant-072221-092913.
Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant molecular biology 50 (1): 43-57. doi: 10.1023/a:1016062325584.
Behringer C, Schwechheimer C (2015) B-GATA tran-scription factors–insights into their structure, regulation, and role in plant development. Frontiers in plant science 6: 90. doi:10.3389/fpls.2015.00090.
Ravindran P, Kumar PP (2019) Regulation of seed germination: The involvement of multiple forces exerted via gibberellic acid signaling. Molecular plant 12 (1): 24-6. doi: 10.1016/j.molp.2018.12.013.
Zhao T, Wu T, Pei T et al. (2021) Overexpression of SlGATA17 promotes drought tolerance in transgenic tomato plants by enhancing activation of the phenylpropanoid biosynthetic pathway. Frontiers in plant science 12: 634888. doi: 10.3389/fpls.2021.634888.
Zhang H, Wu T, Li Z et al. (2021) OsGATA16, a GATA transcription factor, confers cold tolerance by repressing OsWRKY45–1 at the seedling stage in rice. Rice 14 (1): 42. doi: 10.1186/s12284-021-00485-w.
Nutan KK, Singla-Pareek SL, Pareek A (2020) The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of experimental botany 71 (2): 684-98. doi: 10.1093/jxb/erz368.
Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant physiology 134 (4): 1718-32. doi: 10.1104/pp.103.037788.
Zhang C, Hou Y, Hao Q et al. (2015) Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PloS one 10 (4): e0125174. doi: 10.1371/journal.pone.0125174.
Chen H, Shao H, Li K et al. (2017) Genome-wide identification, evolution, and expression analysis of GATA transcription factors in apple (Malus x domestica Borkh.). Gene 627: 460-72. doi: 10.1016/j.gene.2017.06.049.
Zhang Z, Ren C, Zou L et al. (2018) Characterization of the GATA gene family in Vitis vinifera: genome-wide analysis, expression profiles, and involvement in light and phytohormone response. Genome. 61 (10): 713-23. doi: 10.1139/gen-2018-0042.
Zhang Z, Zou X, Huang Z et al. (2019) Genome-wide identification and analysis of the evolution and expression patterns of the GATA transcription factors in three species of Gossypium genus. Gene 680: 72-83. doi: 10.1016/j.gene.2018.09.039.
Niu L, Chu HD, Tran CD et al. (2020) The GATA gene family in chickpea: Structure analysis and transcriptional responses to abscisic acid and dehydration treatments revealed potential genes involved in drought adaptation. Journal of Plant Growth Regulation 39 (4): 1647-60. doi: 10.1007/s00344-020-10201-5.
Wang T, Yang Y, Lou S et al. (2020) Genome-wide characterization and gene expression analyses of GATA transcription factors in Moso bamboo (Phyllostachys edulis). International journal of molecular sciences. 21 (1). doi: 10.3390/ijms21010014.
Yu C, Li N, Yin Y et al. (2021) Genome-wide identification and function characterization of GATA transcription factors during development and in response to abiotic stresses and hormone treatments in pepper. Journal of applied genetics 62 (2): 265-80. doi: 10.1007/s13353-021-00618-3.
Zhang K, Jia L, Yang D et al. (2021) Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in cucumber (Cucumis sativus L.). Plants (Basel) 10 (8): 1626. doi: 10.3390/plants10081626.
Yu R, Chang Y, Chen H et al. (2021) Genome-wide identification of the GATA gene family in potato (Solanum tuberosum L.) and expression analysis. Journal of Plant Biochemistry and Biotechnology 31 (1): 37-48. doi: 10.1007/s13562-021-00652-6.
Manzoor MA, Sabir IA, Shah IH et al. (2021) Comprehensive comparative analysis of the GATA transcription factors in four Rosaceae species and phytohormonal response in Chinese pear (Pyrus bretschneideri) Fruit. International journal of molecular sciences 22 (22). doi:10.3390/ijms222212492.
Peng W, Li W, Song N et al. (2021) Genome-wide characterization, evolution, and expression profile analysis of GATA transcription factors in Brachypodium distachyon. International journal of molecular sciences. 22 (4). doi:10.3390/ijms22042026.
Kim M, Xi H, Park S et al. (2021) Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Scientific reports 11 (1): 1-15. doi:10.1038/s41598-021-95940-5.
Feng X, Yu Q, Zeng J et al. (2022) Genome-wide identification and characterization of GATA family genes in wheat. BMC plant biology 22 (1): 372. doi: 10.1186/s12870-022-03733-3.
Li X, Deng X, Han S et al. (2023) Genome-wide identification and expression analysis of GATA gene family under different nitrogen levels in Arachis hypogaea L. Agronomy 13 (1). doi:10.3390/agronomy13010215.
Jarvis DE, Ho YS, Lightfoot DJ et al. (2017) The genome of Chenopodium quinoa. Nature 542 (7641): 307-12. doi: 10.1038/nature21370.
La HV, Chu HD, Ha QT et al. (2022) SWEET gene family in sugar beet (Beta vulgaris): Genome-wide survey, phylogeny and expression analysis. Pakistan journal of biological sciences 25 (5): 387-95. doi: 10.3923/pjbs.2022.387.395.
Chu HD, Nguyen KH, Watanabe Y et al. (2018) Identification, structural characterization and gene expression analysis of members of the Nuclear factor-Y family in chickpea (Cicer arietinum L.) under dehydration and abscisic acid treatments. International journal of molecular sciences 19 (11): 3290. doi: 10.3390/ijms19113290.
Jin J, Tian F, Yang D-C et al. (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic acids research 45 (D1): D1040-D5. doi: 10.1093/nar/gkw982.
Goodstein DM, Shu S, Howson R et al. (2012) Phytozome: A comparative platform for green plant genomics. Nucleic acids research. 40 (Database issue): D1178-D86. doi: 10.1093/nar/gkr944.
Gasteiger E, Gattiker A, Hoogland C (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research 31 (13): 3784-8. doi: 10.1093/nar/gkg563.
Gasteiger E, Hoogland C, Gattiker A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM ed. The proteomics protocols handbook. Springer. 571-607. doi: 10.1385/1-59259-890-0:571.
Khan AR, Mokhtar NI, Zainuddin Z (2021) In silico characterization of UGT74G1 protein in Stevia rebaudiana Bertoni Accession MS007. Journal of Tropical Life Science. 11 (3): 323-30. doi: 10.11594/jtls.1.1.%25x.
Briesemeister S, Blum T, Brady S et al. (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. Journal of proteome research 8 (11): 5363-6. doi: 10.1021/pr900665y.
Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics. In: Baxevanis AD, ed. Chapter 2:Unit 2.3. doi: 10.1002/0471250953.bi0203s00.
Tamura K, Stecher G, Kumar S (2021) MEGA11: Mo-lecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38 (7): 3022-7. doi: 10.1093/molbev/msab120.
Hu B, Jin J, Guo AY et al. (2015) GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics (Oxford, England). 31 (8): 1296-7. doi: 10.1093/bioinformatics/btu817.
Yao S, You R, Wang S et al. (2021) NetGO 2.0: improving large-scale protein function prediction with massive sequence, text, domain, family and network information. Nucleic Acids Research. 49 (W1): W469-W75. doi: 10.1093/nar/gkab398.
Barrett T, Wilhite SE, Ledoux P et al. (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic acids research 41 (D1): D991-D5. doi: 10.1093/nar/gks1193.
Liu M, Sun W, Li C et al. (2021) A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. Journal of advanced research 29:191-205. doi: 10.1016/j.jare.2020.10.004.
Goodin MM (2018) Chapter six - Protein localization and interaction studies in plants: Toward defining complete proteomes by visualization. In: Kielian M, Mettenleiter TC, Roossinck MJ eds. Advances in virus research 100: Academic Press. 117-44. doi: 10.1016/bs.aivir.2017.10.004.
Zhang C, Huang Y, Xiao Z et al. (2020) A GATA transcription factor from soybean (Glycine max) regulates chlorophyll biosynthesis and suppresses growth in the transgenic Arabidopsis thaliana. Plants. 9 (8): 1036. doi: 10.3390/plants9081036.
Guo J, Bai X, Dai K et al. (2021) Identification of GATA transcription factors in Brachypodium distachyon and functional characterization of BdGATA13 in drought tolerance and response to gibberellins. Frontiers in plant science 12 :763665. doi: 10.3389/fpls.2021.763665.
Hudson D, Guevara DR, Hand AJ et al. (2013) Rice cytokinin GATA transcription factor1 regulates chloroplast development and plant architecture. Plant Physiology 162 (1): 132-44. doi: 10.1104/pp.113.217265.
Conesa A, Götz S, García-Gómez JM et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England) 21 (18): 3674-6. doi: 10.1093/bioinformatics/bti610.
Zhu W, Guo Y, Chen Y et al. (2020) Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in Brassica napus. BMC plant biology 20 (1): 543. doi: 10.1186/s12870-020-02752-2.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Tropical Life Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License