The Effect of Various Photoperiodic Conditions and Zn2+ Concentrations on Growth Rate and Metabolite Content in Euglena sp

Effect of Photoperiod and Zn2+ on Euglena sp.

Authors

  • Eko Agus Suyono Universitas Gadjah Mada
  • Arief Budiman Universitas Gadjah Mada
  • Rejeki Siti Ferniah Universitas Diponegoro
  • Adam Astiti Universitas Gadjah Mada
  • Deviko Mardyansah Universitas Gadjah Mada
  • Fitri Natalia Universitas Gadjah Mada
  • Maya Cindiati Universitas Gadjah Mada
  • Khusnul Qonita Maghfiroh Universitas Gadjah Mada
  • Tia Erfianti Universitas Gadjah Mada
  • Istini Nurafifah Universitas Gadjah Mada
  • Ria Amelia Universitas Gadjah Mada
  • Dedy Kurnianto National Research and Innovation Agency
  • Brilian Ryan Sadewo Universitas Gadjah Mada
  • Revata Maggandari Universitas Gadjah Mada

DOI:

https://doi.org/10.11594/jtls.14.02.04

Keywords:

Euglena sp, Growth, Metabolites, Photoperiodic, Zn2

Abstract

The application of Euglena as a carbon capture organism has generated considerable interest among scientists. Through the photosynthesis process, many kinds of metabolites are produced by Euglena, such as lipids, proteins, and pigments. Due to the metabolites produced by Euglena, it is vital to optimize the carbon capture ability and cell growth rate by adding Zn2+ content and giving photoperiodic into Euglena culture. The purpose of this study is to identify the optimal photoperiod and Zn2+ concentration to increase the growth rate, biomass, and metabolite content of Euglena sp. This study is a laboratory experiment involving the cultivation of Euglena sp. in various photoperiod cycles (light:dark), namely 24:0, 12:12, 14:10, and 16:8. In addition, Euglena sp. was also cultivated using different concentrations of Zn2+ (0 ppm, 5 ppm, 10 ppm, and 15 ppm). The growth of Euglena sp. was monitored for 18 days before being harvested every three days to measure the research parameters, including primary and secondary metabolites. The results showed that the photoperiod treatment and various concentrations of Zn2+ had a significant impact (P<0.05) on the growth rate, biomass, lipid, carbohydrate, protein, chlorophyll, and carotenoid levels of Euglena sp.

 

References

Benedetti M, Vecchi V, Barera S, Dall’Osto L (2018) Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microbial Cell Factories 17: 173. doi: 10.1186/s12934-018-1019-3.

Tsarenko P, Borysova O, Korkhovyi V, Blume Y (2020) High-efficiency Ukrainian strains of microalgae for bio-diesel fuel production (overview). The Open Agriculture Journal 14: 209- 218. doi: 10.2174/1874331502014010209.

Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microal-gae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews 79: 893- 913. doi: 10.1016/j.rser.2017.05.199.

Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: Review on microalgae’s cultiva-tion, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews 75: 692- 709. doi: 10.1016/j.rser.2016.11.045.

Elrayies GM (2018) Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Re-views 81 (1): 1175- 1191. doi: 10.1016/j.rser.2017.08.032.

Barati B, Fazeli Zafar F, Amani BA, Hao C, Qian L, Wang S, El-Fatah AA (2022) Microalgae as a natural CO2 sequester: A study on effect of tobacco smoke on two microalgae biochemical responses. Frontiers in Ener-gy Research 10: 881758. doi: 10.3389/fenrg.2022.881758.

Peng H, de-Bashan LE, Bashan Y, Higgins BT (2020) Indole-3-acetic acid from Azosprillum brasilense pro-motes growth in green algae at the expense of energy storage products. Algal Research 47: 101845. doi: 10.1016/j.algal.2020.101845.

Yadav KK, Musavi SF, Balakrishnan RM (2013) CO2 sequestration and growth characteristics of Euglena gra-cilis in a Photo Bioreactor. International Journal of Engi-neering Research & Technology 2 (11): 4162– 4168.

Huang Y, Cheng J, Lu H, He Y, Zhou J, Cen K (2017) Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2. Biotechnol Biofuels 10: 1– 10. doi: 10.1186/s13068-017-0868-z.

El-Agawany NI, Kaamoush MIA (2023) Role of zinc as an essential microelement for algal growth and concerns about its potential environmental risks. Environmental Science Pollution Research 30: 71900– 71911. doi: 10.1007/s11356-022-20536-z.

Chowdury KH, Nahar N, Deb UK (2020) The growth factors involved in microalgae cultivation for biofuel pro-duction: A review. Computational Water Energy Envi-ronmental and Engineering. 9: 185– 215. doi: 10.4236/cweee.2020.94012.

Ramlee A, Rasdi NW, Wahid ME, Jusoh M (2021) Mi-croalgae and the factors involved in successful propaga-tion for mass production. Journal of Sustainability Sci-ence and Management 16 (3): 21- 42. doi:10.46754/jssm.2021.04.003.

Kumar V, Sharma N, Jaiswal KK, Vlaskin MS, Nanda M, Tripathi MK, Kumar S (2021) Microalgae with a trun-cated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochemistry 104: 83- 91 doi: 10.1016/j.procbio.2021.03.006.

Matos ÂP, Cavanholi MG, Moecke EHS, Sant’Anna ES (2017) Effects of different photoperiod and trophic condi-tions on biomass, protein and lipid production by the ma-rine alga Nannochloropsis gaditana at optimal concentra-tion of desalination concentrate. Bioresource Technology 224: 490- 497 doi: 10.1016/j.biortech.2016.11.004.

Xiong J, Yu L, Zhang Z, Wang Y, Wang W, Yang H, Zhu D (2019) Intrinsic kinetic model of photoautotrophic microalgae based on chlorophyll fluorescence analysis. Mathematical Biosciences 315: 108234. doi: 10.1016/j.mbs.2019.108234.

Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W, Xu J (2021) Modern developmental aspects in the field of economical harvesting and biodiesel produc-tion from microalgae biomass. Renewable and Sustaina-ble Energy Reviews. 135: 110209. doi: 10.1016/j.rser.2020.110209.

Bahar HS, Djunaedi A, Widianingsih W (2022) Perbe-daan lama fotoperiode terhadap total lipid kultur mikroal-ga Chlorella vulgaris. Journal of Marine Research 11(1): 92- 97. doi: 10.14710/jmr.v11i1.32211.

Yusof NS, Yeong YS, Zakeri HA, Wahid MEA, Ghafar SNA, Yusuf N (2021) Photoperiod influenced the growth and antioxidative responses of Chlorella vulgaris, Isochrysis galbana, and Tetraselmis chuii. Journal of Applied Pharmaceutical Science 11(4): 125- 134. doi: 10.7324/JAPS.2021.110415.

Gunawan T, Ikhwan Y, Restuhadi F, Pato U (2018) Ef-fect of light intensity and photoperiod on growth of Chlo-rella pyrenoidosa and CO2 Biofixation. E3S Web of Conferences 31: 03003. doi: 10.1051/e3sconf/20183103003.

Xi Y, Wang J, Chu Y (2020) Effects of different light regimes on Dunaliella salina growth and β-carotene ac-cumulation. Algal Research. 52: 102111, doi: 10.1016/j.algal.2020.

Cramer M, Myers J (1952) Growth and photosynthetic characteristics of Euglena gracilis. Archiv für Mikrobiol-ogie 17 (1–4): 384– 402. doi: 10.1007/BF00410835.

Rinawati M, Sari LA, Pursetyo KT (2020) Chlorophyll and carotenoids analysis spectrophotometer using method on microalgae. IOP Conference Series: Earth and Envi-ronmental Science 441 (1): 012056. doi: 10.1088/1755-1315/441/1/012056.

Daneshvar E, Zarrinmehr M J, Kousha M, Bhatnagar A (2020) Performance evaluation of different harvesting methods and cultivation media on the harvesting efficien-cy of microalga and their fatty acids profile. Fuel 280: 118592. doi: 10.1016/j.fuel.2020.118592.

Lee YK, Shen H (2004) Basic Culturing Techniques. In: Richmond A, eds. Handbook of Microalgal Culture: Bio-technology and Applied Phycology. Oxford, Blackwell Publishing Ltd.

Bligh EG, Dyer WM (1959) Rapid method for lipid ex-traction and purification. Physiol Canadian Journal of Bi-ochemistry and Physiology 35: 911– 915. doi: 10.1139/o59-099.

Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168 (4265): 167. doi: 10.1038/168167a0.

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz-ing the principle of protein-dye binding. Analytical Bio-chemisty 72 (1-2): 248– 254. doi: 10.1016/0003-2697(76)90527-3.

Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89: 27–41. doi: 10.1007/s11120-006-9065-9.

Strickland JDH, Parsons TR (1968) A Practical Hand-book of Seawater Analysis. Bulletin of Fisheries Re-search Board of Canada 167: 1- 311.

Huarachi-Olivera R, Mata MT, Valdés J, Riquelme C (2021) Biosorption of Zn(Ii) from seawater solution by the microalgal biomass of Tetraselmis marina AC16-MESO. International Journal of Molecular Sciences 22 (23): 12799. doi: 10.3390/ijms222312799.

Ting H, Yazhou W, Xin L, Benben W, Shiguo L, Xiangke W (2018) Characterization of additional zinc ions on the growth, biochemical composition and photo-synthetic performance from Spirulina platensis. Biore-source Technology (269): 285– 291. doi: 10.1016/j.biortech.2018.08.131.

Ricardo JC, M Lorena CG, Alicia VS, Gregorio PR, Mayel SF, Michel GSM, R Daniela FM, Rosina ST, Rodolfo GC, M Eugenia TM, Rafael MS (2021) Micro-aerophilia enhances heavy metal biosorption and internal binding by polyphosphates in photosynthetic Euglena gracilis. Algal Research 58: 102384. doi: 10.1016/j.algal.2021.102384.

Daliry S, Hallajisani A, Mohammadi RJ, Nouri H, Gol-zary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management 3: 217– 230. doi: 10.22034/GJESM.2017.03.02.010.

Deng X, Chen B, Xue C, Li D, Hu X, Gao K (2019) Biomass production and biochemical profiles of a fresh-water microalga, Chlorella kessleri, in mixotrophic cul-ture: effects of light intensity and photoperiodicity. Biore-source Technology 273: 358-367. doi: 10.1016/j.biortech.2018.11.032.

Putri DS, Sari DA, Marianah, Astuti SP, Wangiyana IG (2021). Effect of medium type, light intensity, and photo-period on the growth rate of microalgae Chlorococcum sp. local isolate. IOP Conference Series.: Earth Environ-mental Science 913: 012071. doi 10.1088/1755-1315/913/1/012071.

Kaymaz NA, Cetin AK (2020) The effect of photoperiod on growth, and protein, lipid and chlorophyll content in Scenedesmus acutus. Turkish Journal of Science & Tech-nology 15 (2): 79- 84.

Fakhri M, Antika PW, Ekawati AW, Arifin NB, Yuniarti A, Hariati AM (2021) Effect of glucose administration on biomass, β-carotene and protein content of Dunaliella sp. under mixotrophic cultivation. International Journal of Agriculture and Biology 25: 404- 408. doi: 10.17957/IJAB/15.1681.

Deniz İ (2020) Determination of growth conditions for Chlorella vulgaris. Marine Science and Technology Bul-letin 9 (2): 114- 117. doi: 10.33714/masteb.717126.

Napitupulu HP, Simanjuntak L, Sihite CN, Sukendi, D (2019) Effect of difference of photoperiod in culture Chlorella sp. with the continuous photobioreactor system. International Journal of Advanced Engineering Research and Science 6: 300- 304. doi: 10.22161/ijaers.611.46.

Ratomski P, Paw MH (2021) Production of Chlorella vulgaris biomass in tubular photobioreactors during Dif-ferent Culture Conditions. Applied Sciences 11: 1- 13. doi: 10.3390/app11073106.

Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews. 50: 431– 444. doi: 10.1016/j.rser.2015.05.024.

Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, Saputra IK, Samuel PD, Arif MZ, Hariati AM (2021) Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Bi-odiversitas 22: 5344- 5349. doi: 10.13057/biodiv/d221215.

Kumar V, Kumar R, Rawat D, Nanda M (2018) Syner-gistic dynamics of light, photoperiod and chemical stimu-lants influences biomass and lipid productivity in Chlorel-la singularis (UUIND5) for biodiesel production. Ap-plied Biological Chemistry 61: 7– 13. doi: 10.1007/s13765-017-0332-6.

Niangoran NUF, Buso D, Zissis G, Prudhomme T (2021) Influence of light intensity and photoperiod on en-ergy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). OCL 28: 1- 8. doi: 10.1051/ocl/2021025.

Liu S, Daiggerd GT, Kang J, Zhang G (2019) Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseu-domonas palustris in a photobioreactor system. Biore-source Technology 294: 1- 8. doi: 10.1016/j.biortech.2019.122172.

Zhi R, Yang A, Zhang G, Zhu Y, Meng F, Li X (2019) Effects of light dark cycles on photosynthetic bacteria wastewater treatment and valuable substances production. Bioresource Technology 274: 496- 501. doi: 10.1016/j.biortech.2018.12.021.

Kun G, Chunye X, Mengting Y, Linqing L, Pingkang Q, Zheng G, Zhigang G, Xiangyuan D (2022) Optimization of light intensity and photoperiod for growing Chlorella sorokiniana on cooking cocoon wastewater in a bubble-column bioreactor. Algal Research. 62: 102612. doi.org/10.1016/j.algal.2021.

Matos ÂP, Cavanholi MG, Moecke EHS, Sant'Anna ES (2016) Effects of different photoperiod and trophic condi-tions on biomass, protein and lipid production by the ma-rine alga Nannochloropsis gaditana at optimal concentra-tion of desalination concentrate. Bioresource Technology 224: 490– 497. doi: 10.1016/j.biortech.2016.11.004.

Lavens P, Sorgeloos P (1996) Manual on the Production and Use of Live Food for Aquaculture. Belgium, FAO Fisheries Technical Paper.

González-Camejo J, Viruela A, Ruano MV, Barat R, Seco A, Ferrer J (2019) Effect of light intensity, light du-ration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. Algal Research 40: 101511. doi: 10.1016/j.algal.

Zhou T, Wang J, Zheng H, Wu X, Wang Y, Liu M, Xiang S, Cao L, Ruan R, Liu Y (2018) Characterization of additional zinc ions on the growth, biochemical com-position and photosynthetic performance from Spirulina platensis. Bioresource Technology 269: 285- 291. doi: 10.1016/j.biortech.2018.08.131.

Subramanian G, Dineshkumar R, Sen R (2016) Model-ling of oxygen-evolving-complex ionization dynamics for energy efficient production of microalgal biomass, pig-ment and lipid with carbon capture: an engineering vision for a biorefinery. RSC Advances 6: 51941– 51956.

Ryu HJ, Oh KK, Kim YS (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. Journal of Indus-trial and Engineering Chemistry 15 (4): 471– 475. doi: 10.1016/j.jiec.2008.12.012.

Suzuki K (2017) Large-Scale Cultivation of Euglena. In: Schwartzbach S, Shigeoka S, eds. Euglena: Biochemis-try, Cell and Molecular Biology. Advances in Experi-mental Medicine and Biology 979. Springer, Cham. 285-293.

Aisami A, Yasid NA, Shukor, MYA (2020) Optimiza-tion of cultural and physical parameters for phenol bio-degradation by newly identified Pseudomonas sp. AQ5-04. Journal of Tropical Life Science 10 (3): 223- 233. doi:10.11594/Jtls.10.03.06.

Kim JY, Kim KY, Kim SM, Choi YE (2022) Use of rare earth element (REE)-contaminated acidic water as Eugle-na gracilis growth stimulator: A strategy for bioremedia-tion and simultaneous increase in biodiesel productivity. Chemical Engineering Journal 445: 136814. doi: 10.1016/j.cej.2022.136814.

Hu C, Li M, Li J, Zhu Q, Liu Z (2008) Variation of lipid and fatty acid compositions of the marine microalga Pav-lova viridis (Prymnesiophyceae) under laboratory and outdoor cund outdoor culture conditions. World Journal Microbiology and Biotechnology 24 (7): 1209- 1214. doi: 10.1007/s11274-007-9595-0.

Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: Current status and key challenges. Ener-gies 12 (10): 1920. doi: 10.3390/en12101920.

Behera B, Acharya A, Gargey IA, Aly N, Balasubrama-nian P (2018) Bioprocess engineering principles of mi-croalgal cultivation for sustainable biofuel production. Bi-oresource Technolgy Reports 5: 297–316. doi: 10.1016/j.biteb. 2018.08.001.

Lehmuskero A, Chauton MS, Boström T (2018) Light and photosynthetic microalgae: A review of cellular and molecular-scale optical processes. Progress in Oceanog-raphy 168: 43– 56. doi: 10.1016/j.pocean.2018.09.002.

Atikij T, Syaputri Y, Iwahashi H, Praneenararat T, Siri-sattha S, Kageyama H, Sirisattha RW (2019) Enhanced lipid production and molecular dynamics under salinity stress in green microalga Chlamydomonas reinhardtii (137C). Marine Drugs 17 (4): 1- 15. doi: 10.3390/md17080484.

Darvehei P, Bahri PA, Moheimani NR (2018) Model development for the growth of microalgae: a review. Re-newable and Sustainable Energy Review 97: 233– 58. doi: 10.1016/j.rser.2018.08.027.

Sirisuk P, Ra CH, Jeong GT, Kim SK (2018) Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture sys-tem using LED illumination. Bioresource Technology 253: 175– 81. doi: 10.1016/j.biortech.2018.01.020.

Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering. 37: 735- 741. doi: 10.1007/s00449-013-1044-x.

Gammanpila AM, Rupasinghe CP, Subangsihe S (2015) Light intensity and photoperiod effect on growth and lipid accumulation of microalgae Chlorella Vulgaris and Nan-nochloropsis sp. for biodiesel production. In Proceedings of 12th ISERD International Conference. 51– 55.

Vélez-Landa L, Hernández-De León HR, Pérez-Luna YDC, Velázquez-Trujillo S, Moreira-Acosta J, Berrones-Hernández R, Sánchez-Roque Y (2021) Influence of light intensity and photoperiod on the photoautotrophic growth and lipid content of the microalgae Verrucodesmus verru-cosus in a photobioreactor. Sustainability 13 (12): 6606. doi: 10.3390/su13126606.

Baighbeder JB, Lavoile JM (2022) Effect of photoperiods and CO2 concentrations on the cultivation of carbohy-drate-rich P. kessleri microalgae for the sustainable pro-duction of bioethanol. Journal of CO2 Utilization 58: 101934. doi: 10.1016/j.jcou.2022.101934.

Johnson MP (2016) Photosynthesis. Essays in biochem-istry 60 (3): 255- 273. doi: 10.1042/EBC20160016.

Richmond A (2004) Biological principles of mass cultiva-tion. In: Richmond A, eds. Handbook of microalgal mass, culture: biotechnology and applied phycology. Oxford, Blackwell Publishing Ltd.

Chong JF, Fadhullah W, Lim V, Lee CK (2019) Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production. Aquaculture In-ternational 27: 1296– 1288. doi: 10.1007/s10499-019-00385-3.

De Winter L, Cabanelas ITD, Martens DE, Wijffels RH, Barbosa MJ (2017) The influence of day/night cycles on biomass yield and composition of Neochloris oleoabun-dans. Biotechnology and Biofuels 10: 104. doi: 10.1186/s13068-017-0762-8.

Zhang X, Yuan H, Guan L, Wang X, Wang Y, Jiang Z, Cao L, Zhang X (2019) Influence of photoperiods on mi-croalgae biofilm: Photosynthetic performance, biomass yield, and cellular composition. Energies 12 (19): 3724. doi: 10.3390/en12193724.

Schulze PSC, Guerra R, Pereira H, Schuler LM, Varela

JCS (2017) Flashing LEDs for microalgal production. Trends in Biotechnology 35: 1088– 1101. doi: 10.1016/j.tibtech.2017.07.011.

El-Agawany N, Kaamoush M, El-Zeiny A, Ahmed M (2021) Effect of heavy metals on protein content of ma-rine unicellular green alga Dunaliella tertiolecta. Envi-ronmental Monitoring and Assessment 193: 584. doi: 10.1007/s10661-021-09353-y.

Kondzior P, Butarewicz A (2018) Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella Vulgaris. Journal of Ecologi-cal Engineering 19: 18-28. doi: 10.12911/22998993/85375.

Fakhri M, Arifin NB, Yuniarti A, Hariati AM (2017) The influence of salinity on the growth and chlorophyll con-tent of Nannochloropsis sp. BJ17. Nature Environment and Pollution Technology 16: 209- 212.

Kato Y, Fujihara Y, Vavricka CJ, Chang JS, Hasunuma T, Kondo A (2019) Light/dark cycling causes delayed li-pid accumulation and increased photoperiod-based bio-mass yield by altering metabolic flux in oleaginous Chla-mydomonas sp. Biotechnology for Biofuels 12 (1). doi: 10.1186/s13068-019-1380-4.

Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S (2021) Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composi-tion. Biology 10 (10): 1060. doi: 10.3390/biology10101060.

El-Mekkawi SA, Hussein HS, El-Enin SAA, El-Ibiari NN (2019) Assessment of stress conditions for carote-noids accumulation in Chlamydomonas reinhardtii as added-value algal products. Bulletin of the National Re-search Centre 43 (1). doi: 10.1186/s42269-019-0169-8.

Kendirlioglu G, Agirman N, Cetin AK (2015) The effects of photoperiod on the growth and pigment content of Chlorella vulgaris. F.U.Turkish Journal of Science & Technology 10 (2): 7- 10. https://dergipark.org.tr/en/pub/tjst/issue/56881/705044.

Kula M, Kalaji HM, Skoczowski A (2017) Culture densi-ty influence on the photosynthetic efficiency of microal-gae growing under different spectral compositions of light. Journal of Photochemistry and Photobiology B: Bi-ology 167: 290- 298. doi: 10.1016/j.jphotobiol.2017.01.013.

Putalan R, Widiastuti IM (2019) Effect of photoperiod on cell density and chlorophyll-a Chlorella sp. laboratory scale. AGRISAINS 20 (3): 106- 111.

Marques R, Cruz S, Calado R, Lillebø A, Abreu H, Pe-reira R, Pitarma B, da Silva JM, Cartaxana P (2021) Ef-fects of photoperiod and light spectra on growth and pig-ment composition of the green macroalga Codium tomen-tosum. Journal of Applied Phycology 33 (1). doi: 10.1007/s10811-020-02289-9.

Downloads

Published

2024-05-31

Issue

Section

Articles