An Overview of Natural Inert Dust Utilization Against Stored-Product Pests as Part of Integrated Pest Management

An Overview of Natural Inert Dust Utilization Against Stored-Product Pests

Authors

  • M. Bayu Mario Universitas Hasanuddin https://orcid.org/0000-0002-3619-3348
  • William Yeremia Patasik Hasanuddin University
  • Muh. Ridha Taqwa Tang Hasanuddin University
  • Mukhti Muhammad Hasanuddin University
  • Amrina Rosyada Hasanuddin University
  • Ahmad Arisandi Jamal Hasanuddin University
  • Nurwahida Hasanuddin University
  • Leknath Kafle National Pingtung University of Science and Technology
  • Samir AM Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
  • Eirene Brugman Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Hasanuddin, Makassar 90245, In-donesia
  • Ito Fernando Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang 65145, Indo-nesia 65145

DOI:

https://doi.org/10.11594/jtls.14.01.15

Keywords:

Cuticle, Dehydration, Diatomaceous earth, Silica, Zeolite

Abstract

Natural inert dust has been used as a grain protectant since the ancient Aztecs of Mexico to this modern era. Natural inert dust is divided into three groups: the first group includes sand, kaolin, paddy husk ash, wood ash, and clay; the second group includes mineral dust; and the third group includes natural silicas such as diatomaceous earth and zeolite. Natural inert dust has a unique mechanism for killing insect pests. Inert dust particles penetrate the insects’ exoskeleton, causing dehydration through the cuticle. Relative humidity is a crucial factor affecting the efficacy of inert dust application. Inert dust has been traditionally used by farmers, which impacts the insects, such as decreasing population, no insect resistance, and being environmentally friendly. Problems of using inert dust include visible residues on grain, airborne dust, reduced flowability, bulk density reduction, and adverse effects on downstream processing machinery. Moreover, inert dust is a very light product, thus it may cause human respiratory illness. The inert dust can be applied to the smaller or larger storage containers. Natural silica can be readily integrated into modern agriculture as a pest management solution.

Author Biographies

  • M. Bayu Mario, Universitas Hasanuddin

    Department of Plant Pests and Diseases, Faculty of Agriculture

  • William Yeremia Patasik, Hasanuddin University

    Department of Plant Pests and Diseases, Faculty of Agriculture

  • Muh. Ridha Taqwa Tang, Hasanuddin University

    Department of Plant Pests and Diseases, Faculty of Agriculture

  • Mukhti Muhammad, Hasanuddin University
    Department of Plant Pests and Diseases, Faculty of Agriculture
  • Amrina Rosyada, Hasanuddin University

    Department of Plant Pests and Diseases, Faculty of Agriculture

  • Ahmad Arisandi Jamal, Hasanuddin University
    Department of Plant Pests and Diseases, Faculty of Agriculture
  • Nurwahida, Hasanuddin University
    Department of Plant Pests and Diseases, Faculty of Agriculture
  • Leknath Kafle, National Pingtung University of Science and Technology
    Department of Tropical Agriculture and International Cooperation
  • Samir AM, Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt

    Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt

  • Eirene Brugman, Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Hasanuddin, Makassar 90245, In-donesia

    Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Hasanuddin, Makassar 90245, Indonesia

  • Ito Fernando, Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang 65145, Indo-nesia 65145

    Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang 65145, Indonesia 65145

References

Mario MB, Astuti LP, Hsu JL, Kafle L (2021) Fumigant activity of four plant powders against cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae) in stored adzuki bean. Legume Research 44 (6): 667–672. doi: 10.18805/LR-533.

Astuti LP, Mario MB, Widjayanti T (2018) Preference, growth and development of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) on red, white and black rice in whole grain and flour form. Journal of Entomological Research 42 (4): 461–468. doi: 10.5958/0974-4576.2018.00077.4.

Mario MB, Astuti LP, Hsu J-L et al. (2023) Bioefficacy of eight different plant powders applied as fumigants against the adzuki bean weevil, Callosobruchus chinensis. Crop Protection 167 106200. doi: 10.1016/j.cropro.2023.106200.

Wilbur DA (1971) Stored grain insects. In: Pfadt RE ed Fundam. Appl. Entomol., Second. New York, Macmillan Publishing. pp 495–522.

Hamel D, Rozman V, Liška A (2020) Storage of cereals in warehouses with or without pesticides. Insects 11 (12): 846. doi: 10.3390/insects11120846.

Yigit N, Velioglu YS (2020) Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition 60 (21): 3622–3641. doi: 10.1080/10408398.2019.1702501.

Phillips TW, Throne JE (2010) Biorational Approaches to Managing Stored-Product Insects. Annual Review of Entomology 55 (1): 375–397. doi: 10.1146/annurev.ento.54.110807.090451.

Baliota G V., Athanassiou CG (2023) Evaluation of Inert Dusts on Surface Applications and Factors That Maximize Their Insecticidal Efficacy. Applied Sciences 13 (5): 2767. doi: 10.3390/app13052767.

Addai EK, Gabel D, Krause U (2016) Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures. Journal of Hazardous Materials 307 302–311. doi: 10.1016/j.jhazmat.2016.01.018.

Golob P (1997) Current status and future perspectives for inert dusts for control of stored product insects. Journal of Stored Products Research 33 (1): 69–79. doi: 10.1016/S0022-474X(96)00031-8.

Bhadriraju S, Hagstrum D (1996) Integrated Management of Insects in Stored Products. New York, Marcel Dekker, Inc.

Li Y (2018) Understanding the physical and biological effects of dust-induced insect death. Murdoch University

Bhadriraju S, Hagstrum D (2000) Alternatives to Pesticides in Stored-Product IPM. Plant Sci. doi: 10.1007/978-1-4615-4353-4

Subramanyam B, Roesli R (2000) Inert Dusts. In: Altern. to Pestic. Stored-Product IPM. Boston, MA, Springer US. pp 321–380.

Freitas ACO, Gigliolli AAS, Caleffe RRT, Conte H (2020) Insecticidal effect of diatomaceous earth and dolomite powder against corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae). Turkish Journal of Zoology 44 (6): 490–497. doi: 10.3906/zoo-2005-34.

Wilson F (1945) The control of insect pests in Victorian bulk wheat deposits. Journal of the Council for Scientific and Industrial Research (Australia) 18 103–109.

Allen SE (2015) Properties and uses of inert dusts. In: CSIRO Entomol. pp 310–311.

Ebeling W (1971) Sorptive dusts for pest control. Annual review of entomology 16 (117): 123–158. doi: 10.1146/annurev.en.16.010171.001011.

Vayias BJ, Athanassiou CG, Korunic Z, Rozman V (2009) Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: the effect of particle size. Pest Management Science 65 (10): 1118–1123. doi: 10.1002/ps.1801.

Fields PG (1998) Diatomaceous earth: Advantages and limitations. In: Proc. 7 th Iniernaiumal Work. Conf. Stored-product Prot. pp 781–784.

Anon (1991) EPA R.E.D. FACTS: Silicon dioxide and Silica Gel. US.

Smith BC (1969) Effects of Silica on the Survival of Coleomegllla maculata Lengl (Coleoptera: Coccitvellidae) and Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). The Canadian Entomologist 101 (May): 460–462.

DeCrosta A (1979) Mother nature’s bug-killer. Organic Gardening 26 38–44.

Abdelgaleil SAM, Gad HA, Hamza AF, Al-Anany MS (2021) Insecticidal efficacy of two inert dusts and Trichoderma harzianum, applied alone or in combination, against Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. Crop Protection 146 (February): 105656. doi: 10.1016/j.cropro.2021.105656.

Carlson SD, Ball HJ (1962) Mode of Action and Insecticidal Value of a Diatomaceous Earth as a Grain Protectant. Journal of Economic Entomology 55 (6): 964–970. doi: 10.1093/jee/55.6.964.

Chiu SF (1939) Toxicity Studies of So-Called “Inert” Materials With the Rice Weevil and the Granary Weevil. Journal of Economic Entomology 32 (6): 810–821. doi: 10.1093/jee/32.6.810.

Alexander P, Kitchener JA, Briscoe HVA (1944) Inert dust insecticides: Part I. Mechanism of action. Annals of Applied Biology 31 (2): 143–149. doi: 10.1111/j.1744-7348.1944.tb06225.x.

Wigglesworth VB (1947) The epicuticle in an insect, Rhodnius prolixus (Hemiptera). Proceedings of the Royal Society of London Series B, Biological sciences 134 (875): 163–181. doi: 10.1098/rspb.1947.0008.

Korunić ZK, Rozman V, Liška A, Lucić P (2016) Osvrt na prirodne insekticide na bazi dijatomejske zemlje. Poljoprivreda 22 (1): 10–18. doi: 10.18047/poljo.22.1.2.

Ali RA, Hasan M ul, Sagheer M et al. (2022) Factors influencing the combined efficacy of microbial insecticides and inert dusts for the control of Trogoderma granarium. International Journal of Tropical Insect Science 42 (1): 425–433. doi: 10.1007/s42690-021-00559-8.

Astuti LP, Maula R, Rizali A, Mario MB (2019) Effect of Five Types Inert Dust to Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) in Stored Rice Seeds. The Journal of Experimental Life Sciences 9 (3): 164–169. doi: 10.21776/ub.jels.2019.009.03.04.

Kavallieratos NG, Athanassiou CG, Pashalidou FG et al. (2005) Influence of grain type on the insecticidal efficacy of two diatomaceous earth formulations against Rhyzopertha dominica (F) (Coleoptera: Bostrychidae). Pest Management Science 61 (7): 660–666. doi: 10.1002/ps.1034.

Athanassiou CG, Arthur FH (2018) Bacterial insecticides and inert materials. In: Recent Adv. Stored Prod. Prot. Springer Berlin Heidelberg. pp 83–98.

Awad AHA, Saeed Y, Shakour AA et al. (2020) Indoor air fungal pollution of a historical museum, Egypt: a case study. Aerobiologia 36 (2): 197–209. doi: 10.1007/s10453-019-09623-w.

Baliota GV, Lampiri E, Athanassiou CG (2022) Differential Effects of Abiotic Factors on the Insecticidal Efficacy of Diatomaceous Earth against Three Major Stored Product Beetle Species. Agronomy. doi: 10.3390/agronomy12010156

Fields P, Korunic Z (2000) The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. Journal of Stored Products Research 36 (1): 1–13. doi: 10.1016/S0022-474X(99)00021-1.

Cremonez PSG, Moraes LA de A, Aquino GS de et al. (2020) Establishment and control of Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) with inert dusts in stored canola. Entomological Communications 2 ec02001. doi: 10.37486/2675-1305.ec02001.

Kabir BGJ, Lawan M, Jidda MB (2013) Bioactivity of raw diatomaceous earth against Rhyzopertha dominica Fab. (Coleoptera: Bostrichidae): Effects of grain type, dose rate and exposure period. IOSR Journal of Agriculture and Veterinary Science 4 (5): 44–49. doi: 10.9790/2380-0454449.

Karimzadeh R, Salehpoor M, Saber M (2021) Initial efficacy of pyrethroids, inert dusts, their low-dose combinations and low temperature on Oryzaephilus surinamensis and Sitophilus granarius. Journal of Stored Products Research 91 101780. doi: 10.1016/j.jspr.2021.101780.

Wille CL, Wille PE, da Rosa JM et al. (2019) Efficacy of recovered diatomaceous earth from brewery to control Sitophilus zeamais and Acanthoscelides obtectus. Journal of Stored Products Research 83 254–260. doi: 10.1016/j.jspr.2019.07.004.

Korunić Z, Liška A, Lucić P et al. (2020) Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J Stored Prod Res. doi: 10.1016/j.jspr.2019.101565

Mewis I, Ulrichs C (2001) Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella. Journal of Stored Products Research 37 (2): 153–164. doi: 10.1016/S0022-474X(00)00016-3.

Odjo S, Burgueño J, Rivers A, Verhulst N (2020) Hermetic storage technologies reduce maize pest damage in smallholder farming systems in Mexico. J Stored Prod Res. doi: 10.1016/j.jspr.2020.101664

Saed B, Ziaee M, Kiasat A, Jafari Nasab M (2021) Evaluation of Iranian diatomaceous earth in combination with nanosilica from sugarcane bagasse ash applied on three different storage surfaces against two insect pests of stored products. International Journal of Tropical Insect Science 41 (2): 1747–1752. doi: 10.1007/s42690-020-00380-9.

Stejskal V, Vendl T, Aulicky R, Athanassiou C (2021) Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored‐product and food‐industry pest control. Insects. doi: 10.3390/insects12070590

Kamal A, Kamal Sulaiman A, Mohamed Obaid H (2019) Studying the effect of surfaces treated with inert dusts on Callosobruchus maculatus (Fab) Molecular characterization and survey of theileriosis in animals in Erbil city View project An epidemiologic study on Cryptosporidium spp. in Kirkuk c. Article in Journal of Entomology and Zoology Studies 7 (6): 793–795.

Vayias BJ, Athanassiou CG (2004) Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Protection 23 (7): 565–573. doi: 10.1016/j.cropro.2003.11.006.

Gad HA, Atta AAM, Abdelgaleil SAM (2022) Efficacy of combined treatments of abamectin with three inert dusts for the control of Callosobruchus chinensis on cowpea seeds. Crop Protection 153 105884. doi: 10.1016/j.cropro.2021.105884.

Alkan M, Atay T, Ertürk S, Kepenekçi S (2019) Comparison of Bioactivities of Native Diatomaceous Earth againts Turkestan Cockroach [Blatta lateralis Walker (Blattodea: Blattidae)] Nymphs. Appl Ecol Environ Res. doi: 10.15666/aeer/1703_59875994

Faulde MK, Tisch M, Scharninghausen JJ (2006) Efficacy of modified diatomaceous earth on different cockroach species (Orthoptera, Blattellidae) and silverfish (Thysanura, Lepismatidae). Journal of Pest Science 79 (3): 155–161. doi: 10.1007/s10340-006-0127-8.

Alkan M, Erturk S, Firat TA, Ciftci E (2019) Study of insecticidal and behavioral effects and some characteristic of native diatomaceous earth against the bean weevil, Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Fresenius Environmental Bulletin 28 (4): 2916–2922.

Tapondjou LA, Adler C, Bouda H, Fontem DA (2002) Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. Journal of Stored Products Research 38 (4): 395–402. doi: 10.1016/S0022-474X(01)00044-3.

Araya G, Getu E (2009) Evaluation of botanical plants powders against Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) in stored haricot beans under laboratory condition. African Journal of Agricultural Research 4 (10): 1073–1079.

Bertke EM (1964) The effect of ingestion of diatomaceous earth in white rats: A subacute toxicity test. Toxicology and Applied Pharmacology 6 (3): 284–291. doi: 10.1016/0041-008X(64)90069-9.

Ziaee M, Ebadollahi A, Wakil W (2021) Integrating inert dusts with other technologies in stored products protection. Toxin Reviews 40 (4): 404–419. doi: 10.1080/15569543.2019.1633673.

Zeni V, Baliota G V., Benelli G et al. (2021) Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 26 (24): 1–29. doi: 10.3390/molecules26247487.

Ertürk S, Atay T, Toprak U, Alkan M (2020) The efficacy of different surface applications of wettable powder formulation of Detech® diatomaceous earth against the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research 89 101725. doi: 10.1016/j.jspr.2020.101725.

Faliagka S, Agrafioti P, Lampiri E et al. (2020) Assessment of different inert dust formulations for the control of Sitophilus oryzae, Tribolium confusum and Aphis fabae. Crop Protection 137 (July): 105312. doi: 10.1016/j.cropro.2020.105312.

Frederick JL, Subramanyam B (2016) Influence of temperature and application rate on efficacy of a diatomaceous earth formulation against Tribolium castaneum adults. Journal of Stored Products Research 69 86–90. doi: 10.1016/j.jspr.2016.06.009.

Chintzoglou G, Athanassiou CG, Arthur FH (2008) Insecticidal effect of spinosad dust, in combination with diatomaceous earth, against two stored-grain beetle species. Journal of Stored Products Research 44 (4): 347–353. doi: 10.1016/j.jspr.2008.03.005.

Riasat T, Wakil W, Ashfaq M, Sahi ST (2011) Effect of Beauveria bassiana mixed with diatomaceous earth on mortality, mycosis and sporulation of Rhyzopertha dominica on stored wheat. Phytoparasitica 39 (4): 325–331. doi: 10.1007/s12600-011-0164-6.

Rizwan M, Atta B, Rizwan M et al. (2019) Effect of the Entomopathogenic Fungus, Beauveria Bassiana, Combined with Diatomaceous Earth on the Red Flour Beetle, Tribolium castaneum (Herbst) (tenebrionidae: Coleoptera). Egyptian Journal of Biological Pest Control 29 (1): 1–6. doi: 10.1186/s41938-019-0131-y.

Zhanda J, Mvumi BM, Machekano H (2020) Potential of three enhanced diatomaceous earths against Sitophilus zeamais Motschulsky and Prostephanus truncantus (Horn) on stored maize grain. Journal of Stored Products Research 87 1–6. doi: 10.1016/j.jspr.2020.101608.

Korunic Z, Fields PG (2020) Evaluation of three new insecticide formulations based on inert dusts and botanicals against four stored-grain beetles. Journal of Stored Products Research 88 1–8. doi: 10.1016/j.jspr.2020.101633.

Kavallieratos NG, Athanassiou CG, Vayias BJ et al. (2010) Efficacy and adherence ratio of diatomaceous earth and spinosad in three wheat varieties against three stored-product insect pests. Journal of Stored Products Research 46 (2): 73–80. doi: 10.1016/j.jspr.2009.10.003.

Lord JC (2001) Desiccant Dusts Synergize the Effect of Beauveria bassiana (Hyphomycetes: Moniliales) on Stored-Grain Beetles. Journal of Economic Entomology 94 (2): 367–372. doi: 10.1603/0022-0493-94.2.367.

Fleurat-Lessard F (2004) Stored Grain | Pest Management. In: Wrigley C, Corke H, Walkers CE eds Encycl. Grain Sci. Elsevier. pp 244–254.

Freo JD, Rosso ND, Dias de Moraes LB et al. (2011) Physicochemical properties and silicon content in wheat flour treated with diatomaceous earth and conventionally stored. Journal of Stored Products Research 47 (4): 316–320. doi: 10.1016/j.jspr.2011.05.001.

Athanassiou CG, Korunic Z (2007) Evaluation of two new diatomaceous earth formulations, enhanced with abamectin and bitterbarkomycin, against four stored-grain beetle species. Journal of Stored Products Research 43 (4): 468–473. doi: 10.1016/j.jspr.2006.12.008.

Liška A, Korunić Z, Rozman V et al. (2017) Efficacy of nine Croatian inert dusts against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae) on wheat. Emirates Journal of Food and Agriculture 29 (7): 485–494. doi: 10.9755/ejfa.2016-09-1302.

Yao KD, Subramanyam B, Maghirang RG (2022) Moisture content and application rates of inert dust: effects on dust and wheat physical properties. Food Research 6 (3): 12–20. doi: 10.26656/fr.2017.6(3).280.

Athanassiou CG, Kavallieratos NG, Vayias BJ et al. (2011) Laboratory evaluation of diatomaceous earth deposits mined from several locations in central and southeastern Europe as potential protectants against coleopteran grain pests. Crop Protection 30 (3): 329–339. doi: 10.1016/j.cropro.2010.10.004.

Vayias BJ, Athanassiou CG, Buchelos CT (2008) Evaluation of resistance development by Tribolium confusum Du Val (Coleoptera: Tenebrionidae) to diatomaceous earth under laboratory selection. Journal of Stored Products Research 44 (2): 162–168. doi: 10.1016/j.jspr.2007.09.001.

Rigaux M, Haubruge E, Fields PG (2001) Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum. Entomologia Experimentalis et Applicata 101 (1): 33–39. doi: 10.1046/j.1570-7458.2001.00888.x.

Bohinc T, Trdan S (2017) Comparison of insecticidal efficacy of four natural substances against granary weevil (Sitophilus granarius [L.]) adults: does the combined use of the substances improve their efficacy? Spanish Journal of Agricultural Research 15 (3): e1009. doi: 10.5424/sjar/2017153-11172.

Gvozdenac S, Snežana TSK et al. (2018) Effects of different inert dusts on Sitophilus oryzae and Plodia interpunctella during contact exposure. In: 12th Int. Work. Conf. Stored Prod. Prot. pp 34–39.

Al-Iraq RA, Al-Naqib SQ (2006) Inert Dust to Control Adults of Some Stored Product Insects in Stored Wheat. Fafidain Journal of Science 17 (11): 26–33.

Kljajić P, Andrić G, Adamović M et al. (2010) Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. Journal of Stored Products Research 46 (1): 1–6. doi: 10.1016/j.jspr.2009.07.001.

Contessi A, Mucciolini G (1997) Prove comparative insetticida di Polveri Silicee a base di Zeoliti e di farina fossile diatomee. Report of Regione Emilia Romagna, Servizia fitosanitario, Ravenna, Italy 11.

Nikpay A (2006) Diatomaceous earths as alternatives to chemical insecticides in stored grain. Insect Science 13 (6): 421–429. doi: 10.1111/j.1744-7917.2006.00111.x.

Desmarchelier JM, Dines JC (1987) Dryacide treatment of stored wheat: its efficacy against inseects, and after processing. Australian Journal of Experimental Agriculture 27 (2): 309–312.

Aldryhim YN (1990) Efficacy of the amorphous silica dust, Dryacide, against Tribolium confusum Duv. and Sitophilus granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae). Journal of Stored Products Research 26 207–210.

Aldryhim YN (1993) Combination of classes of wheat and environmental factors affecting the efficacy of amorphous silica dust, Dryacide, against Rhyzopertha dominica (F.). Journal of Stored Products Research 29 271–275.

McLaughlin A (1994) Laboratory trials on desiccant dust insecticides. In: Highley E, Wright EJ, Banks HJ, Champ BR eds Proc. 6th Int. Work. Conf. Stored-Product Prot. pp 638–645.

Nickson PJ, Desmarchelier JM, Gibbs P (1994) Combination of cooling with a surface application of Dryacide to control insects. In: Proc. 6th Int. Work. Conf. Stored-Product Prot. pp 646–649.

Ziaee M, Nikpay A, Khashaveh A (2007) Effect of oil seed type on the efficacy of five diatomaceous earth formulations against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Journal of Pest Science 80 (4): 199–204.

Jairoce CF, Teixeira CM, Nunes AM et al. (2016) Efficiency of inert mineral dusts in the control of corn weevil. Revista Brasileira de Engenharia Agricola e Ambiental 20 (2): 158–162. doi: 10.1590/1807-1929/agriambi.v20n2p158-162.

Morais MB, Crespo FLS, Dos Santos VB et al. (2009) Uso de terra diatomácea como controle alternativo do Oryzaephilus surinamensis em milho armazenado. Diversa 2 1–9.

Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: State of the art and strategies to overcome existing gaps. Science of The Total Environment 425 271–282. doi: 10.1016/j.scitotenv.2012.03.001.

Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Critical Reviews in Environmental Science and Technology 43 (16): 1823–1867. doi: 10.1080/10643389.2012.671750.

Kumar S, Nehra M, Kedia D et al. (2018) Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 64 219–253. doi: 10.1016/j.pecs.2017.10.005.

Singh A, Dhiman N, Kar AK et al. (2020) Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials 385 121525. doi: 10.1016/j.jhazmat.2019.121525.

Jasrotia P, Nagpal M, Mishra CN et al. (2022) Nanomaterials for Postharvest Management of Insets: Current State and Future Perspectives. Fronttiers in Nanotechnology 3 (811056): 1–19.

Dang NTT, Nguyen TTA, Phan TD et al. (2018) Synthesis of silica nanoparticles from rice husk ash. Science and Technology Development Journal 20 (K7): 50–54. doi: 10.32508/stdj.v20iK7.1211.

Abdou WL, Abdel-hakim EA, Salem NY (2022) The Insectidal Effect of Silica Nanoparticles on Callosobruchus maculatus (Coleoptera: bruchidae) and its side effects. Middle East Journal of Applied Sciences 12 (3) (2008): 193–202. doi: 10.36632/mejas/2022.12.3.20.

Huang L, Yang S, Chen J et al. (2019) A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Materials Science and Engineering: C 94 270–278. doi: 10.1016/j.msec.2018.09.042.

Wazid, Nadagouda S, Prabhuraj A et al. (2020) The Persistence of Residual Toxicity of Zinc, Copper an Silica Green Nanoparticles against Important Storage Pests. Journal of Entomology and Zoology Studies 8 (5): 1207–1211.

Faulde MK, Scharninghausen JJ, Cavaljuga S (2006) Toxic and behavioural effects of different modified diatomaceous earths on the German cockroach, Blattella germanica (L.) (Orthoptera: Blattellidae) under simulated field conditions. Journal of Stored Products Research 42 (3): 253–263. doi: 10.1016/j.jspr.2005.03.001.

Alexander P, Kitchener JA, Briscoe HVA (1944) Inert dust insecticides: Part III. The effect of dusts on stored products pests other than Calandra granaria. Annals of Applied Biology 31 (2): 156–159. doi: 10.1111/j.1744-7348.1944.tb06227.x.

Subramanyam B, Swanson CL, Madamanchi N, Norwood S (1994) Effectiveness of Insecto®, a new diatomaceous earth formulation, in suppressing several stored-grain insect species. In: Int. Conf. Stored-Product Prot. ed. E. Highley, E. J. Wright, H. J. Banks and B. R. Champ. pp 650–659.

Ibrahim ND, Audu A, Dike MC, Lawal M (2012) Original article Effect of raw diatomaceous earth and plant powders on Callosobruchus subinnotatus (Pic.) infesting stored bambara groundnut seeds. Scientific Journal of Pure and Applied Sciences 1 (1): 9–16.

Hakbijl T (2002) The Traditional, Historical and Prehistoric Use of Ashes as an Insecticide, with an Experimental Study on the Insecticidal Efficacy of Washed Ash. Environmental Archaeology 7 (1): 13–22. doi: 10.1179/env.2002.7.1.13.

Masiiwa P (2004) Evaluation of African Diatomaceous Earths(DEs) as potential maize grain protectants against the maize weevil (Sitophilus zeamais). University of Zimbabwe

Respyan G, Rahardjo BT, Astuti LP (2015) Pengaruh inert dust terhadap mortalitas Sitophilus zeamais Mostchulsky pada biji jagung dalam simpanan. Jurnal HPT 3 (2): 31–38.

Andarista V (2017) Pengaruh Aplikasi Berbagai Jenis Inert Dust Terhadap Mortalitas Imago dan Pertumbuhan Populasi Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) Pada Benih Jagung dalam Simpanan. Unversitas Brawijaya

Subramanyam B, Madamanchi N, Norwood S (1998) Effectiveness of Insecto Applied to Shelled Maize Against Stored-Product Insect Larvae. Journal of Economic Entomology 91 (1): 280–286. doi: 10.1093/jee/91.1.280.

Alves LFA, Oliveira DGP, Neves PMOJ (2008) Fatores que afetam a eficiência da terra de diatomácea no controle de adultos de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Neotropical Entomology 37 (6): 716–722. doi: 10.1590/S1519-566X2008000600014.

Rigaux M, Haubruge E, Fields PG (2001) Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum. Entomologia Experimentalis et Applicata 101 (1): 33–39. doi: 10.1046/j.1570-7458.2001.00888.x.

Downloads

Published

2024-02-09

Issue

Section

Review