Soil Properties and Macrofauna Community in a Converted Intensive Rice Field into an Organic Polyculture in Malang Regency, Indonesia

Soil Properties and Macrofauna Community in a Converted Intensive Rice Field

Authors

  • Durrotul Inayah Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya
  • Irfan Mustafa Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, 65145
  • Endang Arisoesilaningsih Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, 65145

DOI:

https://doi.org/10.11594/jtls.14.01.13

Keywords:

Intensive rice field conversion, Macrofauna, Organic polyculture, Soil properties

Abstract

Farmers in Malang cultivated rice intensively since 2019 due to water availability but reduce yields. It might also reduce soil productivity and increase pest attacks, so the conversion field to organic polyculture was needed using sorghum and legumes. The research aims were to evaluate soil fauna dynamics and soil properties in the three, six, and 12 months after converting (mac) into organic polyculture. Soil and micro-climate factors were recorded including air temperature (°C), day length (hours), rainfall (mm), water content (%), organic matter content (%), electrical conductivity (mS.m-1), pH, and soil bulk density (g.cm-3). Soil macrofauna was sampled using hand sorting (20 x 20 x 10 cm) with five plots at each field. Identified soil macrofauna was used to determine the density, frequency, Important Value Index (IVI), Shannon-Wiener Diversity Index (H'), Evenness Index (E), Simpson Dominance Index (D), Diversity t-test, and Indicator Species. The Canonical Correspondence Analysis (CCA) was used to analyze the interaction among abiotic factors and macrofauna using PAST 4.05. Results showed that the improvement of soil properties including soil organic matter and soil macrofauna was recorded at 6 mac compared to the intensive rice field, and continuously at 12 mac. The richness, diversity, and evenness of soil macrofauna taxa were higher in the converted field than in the intensive one due to organic polyculture. Moreover, we recorded a better proportion of detritivores and predators in the converted field after 12 months. Based on Indicator Species analysis, the dominant fire ants (Solenopsis sp.) in the intensive rice field might be considered as a potential indicator of unhealthy soil in the intensive rice fields. Whereas in the converted field the dominancy of these ants greatly decreased. We concluded that within 6 months conversion using the organic polyculture improved soil properties.

Author Biography

  • Durrotul Inayah, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya
    Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya

References

Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al. (2016) Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health 4:148. doi: 10.3389/fpubh.2016.00148.

Sanford C, Sabapathy D, Morrison H, Gaudreau K (2015) Pesticides and Human Health Part 1: Sys-tematic Review. Prince Edward Island. Canada.

Osman, KA (2017) Pesticides and Human Health. Alexandria University, Department of Pesticide Chemistry & Toxicology, College of Agriculture, El-Chatby, Alexandria, Egypt.

Shah R (2020) Pesticides and human health in Emerging Contaminants by Aurel Nuro (ed). InTechOpen. Accepted Chapter. (ISBN 978-1-83962-419-3).

Magdoff F, Van Es H (2021) Building Soils for Bet-ter Crops Ecological Management for Healthy Soils. e Sustainable Agriculture Research and Education (SARE) program, with funding from the National Institute of Food and Agriculture, U.S. Department of Agriculture.

Mohler CL, Johnson SE (2009) Crop Rotation on Organic Farms a Planning Manual. Sustainable Ag-riculture Research and Education (SARE) program. SARE is supported by the National Institute of Food and Agriculture, U.S. Deparment of Agricul-ture. Formerly published by Plant and Life Scienc-es Publishing (PALS).

Crusciol CAC, Soratto RP, Borghi E, Matheus GP (2010) Benefits of integrating crops and tropical

pastures as systems of production. Better Crops with Plant Food 94: 14-6.

Bottega EL, Queiroz DM, Pinto FAC, Souza CMA (2013) Variabilidade especial de atributos do solo em sistema de semeadura direta com rotação de culturas no cerrado brasileiro. Revista Ciencia Ag-ronomica 44:1-9. doi: 10.1590/S1806-66902013000100001.

Paungfoo-Lonhienne C, Yeoh YK, Kasinadhuni NRP, et al. (2015) Nitrogen Fertilizer Dose Alters Fungal Communities in Sugarcane Soil and Rhizo-sphere. Scientific Reports 5: 8678. doi: 10.1038/srep08678.

Zhou J, Jiang X, Wei D, et al. (2017) Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Scientific Report 7: 3267. doi:10.1038/s41598-017-03539-6.

du Plessis J (2008) Sorghum Production. Depart-ment Agriculture. Republic of South Africa.

Martens MP (2013) Grain Crops in Indonesia. Sulang Language Data and Working Papers: Topics in Lexicography, no. 9. http://sulang.org/sites/default/files-/sulanglextopics009-v1.pdf. Accessed in Novem-ber 2021.

Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple Benefits of Legumes for Agriculture Sus-tainability: An Overview. Chemical and Biological Technologies in Agriculture 4:2. doi: 10.1186/s40538-

-0085-1.

Kebede E (2021) Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitro-gen Fixation in Agricultural Systems. Frontiers in Sustainable Food Systems 5: 767998. doi: 10.3389/fsufs.2021.767998.

Lai H, Gao F, Su H, et al. (2022) Nitrogen Distribu-tion and Soil Microbial Community Characteristics in a Legume–Cereal Intercropping System: A Re-view. Agronomy 12, 1900. doi: 10.3390/agronomy12081900.

Huang Z, Cui C, Cao Y, et al. (2022) Tea Plant–Legume Intercropping Simultaneously Improves Soil Fertility and Tea Quality by Chang-ing Bacillus Species Composition. Horticulture Re-search. doi: 10.1093/hr/uhac046.

Virk AL, Lin BJ, Kan ZR et al. (2022) Chapter Two - Simultaneous Effects of Legume Cultivation on Carbon and Nitrogen Accumulation in Soil. Ad-vances in Agronomy 171: 75-110. doi: 10.1016/bs.agron.2021.08.002.

Vries FT, Thébault E, Liiri M, et al. (2013) Soil Food Web Properties Explain Ecosystem Services Across European Land Use Systems. P Natl A Sci USA 110:14296-14301. doi: 10.1073/pnas.1305198110.

Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctional-ity. P Natl A Sci USA 111: 5266-5270. doi: 10.1073/pnas.1320054111.

Siqueira GM, Silva RA, Aguiar ACF, et al. (2016) Spatial Variability of Weeds in An Oxisol Under No-Tillage System. Afr J Agric Res. 11:2569-2576. doi: 10.5897/AJAR2016.11120.

Vasconcellos RLF, Segat JC, Bonfim JA, et al. (2013) Soil Macrofauna as an Indicator of Soil Quality in an Undisturbed Riparian Forest and Recovering Sites of Different Ages. Eur J Soil Biol. 58:105-12. doi: 10.1016/j.ejsobi.2013.07.001.

Rousseau GX, Silva PRS, Celentano D, Carvalho CJR (2014) Macrofauna do solo em uma cronosequên-cia de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amaz. 44:499-512. doi: 10.1590/18094392201303245.

Moura EG, Aguiar ACF, Piedade AR, Rousseau GX (2015) Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Appl Soil Ecol. 86:91-99. doi: 10.1016/j.apsoil.2014.10.008.

Domínguez A, Bedano JC, Becker AR, Arolfo RV (2014) Organic Farming Fosters Agroecosystem Functioning in Argentinian Temperate Soils: Evi-dence from Litter Decomposition and Soil Fauna.

Appl Soil Ecol. 83:170-6. doi: 10.1016/j.apsoil.2013.11.008.

Silva RA, Siqueira GM, Costa MKL et al. (2018) Spatial Variability of Soil Fauna Under Different Land Use and Managements. Rev Bras Cienc Solo. 42:e0170121. doi: 10.1590/18069657rbcs20170121.

O’kelly BC (2005) Oven-Drying Characteristic of Soil of Different Origins. Dry. Technol. 23(5): 1141-1149. doi: 10.1081/DRT-200059149.

Keener HM, Pecchia JA, Reid GL et al. (2002) Ef-fects of Aeration and Covers on NH3, Water and Dry Matter Loss during Windrow Composting of Dairy Manure. in Matthiessen MK, Larney FJ, Selinger LB, Olson AF (2005) Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content of Compost and Manure. Commun. Soil. Sci. Plant Anal. 36:2561-2573. doi: 10.1080/00103620500257242.

Matthiessen MK, Larney FJ, Selinger LB, Olson AF (2005) Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content of Compost and Manure. Commun. Soil. Sci. Plant Anal. 36:2561–2573. doi: 10.1080/00103620500257242.

Heiri O, Lotter AF, Lemcke G (2001) Loss on Igni-tion as a Method for Estimating Organic and Car-bonate Content in Sediments: Reproducibility and Comparability of Results. Journal of Paleolimnolo-gy. 25:101–110. doi: 10.1023/A:1008119611481.

Karla, YP (1995) Determination of pH of Soils by Different Methods: Collaborative Study. J. AOAC Int. 78(2):310-324. doi: 10.1093/jaoac/78.2.310.

Kargas G, Londra P, Sgoubopoulou A (2020) Com-parison of Soil EC Values from Methods Based on 1:1 and 1:5 Soil to Water Ratios and ECe from Sat-urated Paste Extract Based Method. Water 12(1010): 1-12. doi:10.3390/w12041010.

Ali H (2010) Fundamentals of Irrigation and On-Farm Water Management. Springer Science & Business Media, New York.

Smith J, Potts S, Eggleton P (2008) Evaluating the efficiency of sampling methods in assessing soil macrofauna communities in arable systems. Euro-pean Journal of Soil Biology 44: 271-276. doi:10.1016/j.ejsobi.2008.02.002.

Moreira, Fattima MS, Bignell DE, EJ Huising (2008) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity. Earthscan.

Nielsen, UN (2019) Soil fauna assemblages. Cam-bridge University Press.

Izadi M, Habashi H (2016) Changes in Diversity, Biomass and Abundance of Soil Macrofauna, Par-rotio-Carpinetum Forest at Organic and Semi-Organic Horizon. Eurasian J Soil Sci 5(3): 166-171. doi: 10.18393/ejss.2016.3.166-171.

Wasis B, Winata B, Marpaung DR (2018) Impact of Land and Forest Fire on Soil Fauna Diversity in Several and Cover in Jambi Province, Indonesia. BIODIVERSITAS 19(2): 740-746. doi: 10.13057/biodiv/d190249.

Hammer Q (2021) PAST (Paleontological Statis-tics) 4.05 Reference manual. Natural History Mu-seum University of Oslo Press. Oslo.

Devetter M, Hanel L, Rehakova K, Dolezal J (2017) Diversity and Feeding Strategies of Soil Microfauna Along Elevation Gradients in Himalayan Cold De-serts. Plos One. doi: 10.1371/journal.pone.0187646.

Ardiansyah MN, Satrio FA (2021) BMKG Prediksi Musim Hujan Datang Lebih Awal, Dearah Perlu Waspada. https://malang.times.co.id/news/berita/nr-wwl3pvr8/bmkg-prediksi-musim-hujan-datang-lebih-awal-daerah-perlu-waspada. Accessed in August 2022.

BMKG (Badan Meteorologi, Klimatologi, dan Geof-isika) Karanglo, Malang (2021) Prakiraan 6 Bu-lanan Awal Musim Hujan Tahun 2021/2022 Zona Musim di Provinsi Jawa Timur. https://karangploso.jatim.bmkg.go.id/index.php/prakiraan-iklim/prakiraan-musim/prakiraan-musim-hujan/-prakiraan-awal-musim-hujan. Ac-cessed in August 2022.

Tan KH (2008) Soils in the Humid Tropics and Monsoon Region of Indonesia. CRC Press, London.

BMKG (Badan Meteorologi, Klimatologi, dan Geof-isika) Karanglo, Malang (2021) Prakiraan 6 Bu-lanan Puncak Musim Hujan Tahun 2021/2022 Zona Musim di Provinsi Jawa Timur. https://karangploso.jatim.bmkg.go.id/index.php/profil/meteorologi/list-of-all-tags/prakiraan-puncak-musim-hujan-tahun-2021-2022-zona-musim-di-provinsi-jawa-timur. Accessed in August 2022.

BMKG (Badan Meteorologi, Klimatologi, dan Geof-isika) Karanglo, Malang (2022) Prakiraan 6 Bu-lanan Awal Musim Kemarau Tahun 2022 Zona Musim di Provinsi Jawa Timur. https://karangploso.jatim.bmkg.go.id/index.php/prakiraan-iklim/prakiraan-musim/prakiraan-musim-kemarau/prakiraan-awal-musim-kemarau#:~:text=Provinsi-%20Jawa%20Timur-,Awal%20Musim%20Kemarau%20(AMK)%202022-%20di%2060%20Zona%20Musim%20(,2022%20di%20ZOM%20175%20(Malang. Accessed in September 2022.

BMKG (Badan Meteorologi, Klimatologi, dan Geof-isika) Karanglo, Malang (2022) Prakiraan 6 Bu-lanan Puncak Musim Kemarau Tahun 2022 Zona Musim di Provinsi Jawa Timur. https://karangploso.jatim.bmkg.go.id/index.php/prakiraan-iklim/prakiraan-musim/prakiraan-musim-kemarau/prakiraan-puncak-musim-kemarau-zona-musim-di-provinsi-jawa-timur. Ac-cessed in September 2022.

Wicaksono A (2022) Penyebab Curah Hujan Masih Tinggi Meski Masuk Musim Kemarau. https://www.cnnindonesia.com/teknologi/20220716183256-199-822425/penyebab-curah-hujan-masih-ting-gi-meski-masuk-musim-kemarau. Ac-cessed in September 2022.

Hardiantoro A, Pratiwi IE (2022) Ramai soal Penyebab Cuaca Dingin yang Berlangsung hingga Agustus, Ini Penjelasan BMKG. https://www.kompas.com-/tren/read/2022/06/12/141500065/ramai-soal-penye-bab-cuaca-dingin-yang-berlangsung-hingga-agustus-ini?page=all. Accessed in Septem-ber 2022.

Inthapan P, Fukai S (1988) Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland. 2. Comparison with maize and grain sorghum under wet and dry condi-tions. Australian Journal of Experimental Agricul-ture 28(2): 243-248.

Martens, MP (2013) Grain Crops in Indonesia. Sulang Language Data and Working Papers: Topics in Lexicography, no. 9. http://sulang.org/sites/default/files/sulanglextopics009-v1.pdf. Accessed on 10th November 2021.

Lange M, Eisenhauer N, Sierra1 CA et al. (2015) Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. NATURE COMMUNICATIONS. doi: 10.1038/ncomms7707.

Chen S, Wang W, Xu W, et al. (2018) Plant Diversi-ty Enhances Productivity and Soil Carbon Storage. PNAS 115(16): 4027-4032. doi: 10.1073/pnas.1700298114.

El Moujahid L, Le Roux X, Michalet S, et al. (2017) Effect of Plant Diversity on The Diversity of Soil Organic Compounds. PLoS One 12(2): e0170494. doi: 10.1371%2Fjournal.pone.0170494.

Furey GN, Tilman D (2021) Plant Biodiversity and The Regeneration of Soil Fertility. PNAS 118(49): e2111321118. doi: 10.1073/pnas.2111321118.

McCauley A, Jones C, Olson-Rutz K (2017) Nutri-ent Management Modul No. 8: Soil pH and Organic Matter. Montana State Univ. Press. Montana.

Oshunsanya SO (2018) Introductory Chapter: Relevance of Soil pH to Agriculture. Intechopen. doi: 10.5772/intechopen.82551.

United States Department of Agriculture (USDA) (2014) Soil Electrical Conductivity. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052803.pdf. Accessed in Sep-tember 2022.

Indoria AK, Sharma KL, Reddy KS (2020) Chapter 18 - Hydraulic properties of soil under warming climate. Climate Change and Soil Interactions. doi: 10.1016/B978-0-12-818032-7.00018-7.

Menta C, Remelli S (2020) Soil Health and Arthro-pods: From Complex System to Worthwhile Inves-tigation. Insect 11 (54): 1-21. doi: 10.3390/insects11010054.

Tan B, Yin R, Zhang J, et al. (2020) Temperature and Moisture Modulate the Contribution of Soil Fauna to Litter Decomposition via Different Path-ways. Ecosystem. doi: 10.1007/s10021-020-00573-w.

Koninger J, Lugato E, Panagos P et al. (2021) Ma-nure management and soil biodiversity: Towards more sustainable food systems in the EU. Agricul-tural Systems 194:103251. doi: 10.1016/j.agsy.2021.103251.

Liang Q, Chen H, Gong Y et al. (2014) Effects of 15 years of manure and mineral fertilisers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 60: 112–119. doi: 10.1016/j.ejsobi.2013.11.009.

Bengtsson J, Ahnstrom J, Weibull AC (2005) The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-Analysis. J. Appl. Ecol. 42: 261–269. doi: 10.1111/j.1365-2664.2005.01005.x.

Birkhofer K, Bezemer TM, Bloem J, et al. (2008) Long-term Organic Farming Fosters Below and Aboveground Biota: Implications for Soil Quality, Biological Control

and Productivity. Soil Biol. Biochem. 40(9): 2297–2308. doi: 10.1016/j.soilbio.2008.05.007.

van Eekeren N, de Boer H, Bloem J, et al. (2009) Soil Biological Quality of Grassland Fertilized with Adjusted Cattle Manure Slurries in Comparison with Organic and Inorganic Fertilisers. Biol. Fertil. Soils 45: 595–608.

Wang S, Chen HYH, Tan Y, et al. (2016) Fertilizer Regime Impacts on Abundance and Diversity of Soil Fauna Across a Poplar Plantation Chronose-quence in Coastal Eastern China. Scientific Report 6:20816. doi: 10.1038/srep20816.

Sandor M, Brad T, Maxim A, et al. (2016) The Ef-fect of Fertilizer Regime on Soil Fauna. Bulletin UASVM series Agriculture 73(2): 353-354. doi: 10.15835/buasvmcn-agr:12445.

Seleem M, Khalafallah N, Zuhair R et al. (2022) Effect of Integration of Poultry Manure and Vi-nasse on The Abundance and Diversity of Soil Fauna, Soil Fertility Index, And Barley (Hordeum Aestivum L.) Growth in Calcareous Soils. BMC Plant Biology 22:492. https://doi.org/10.1186/s12870-022-03881-6.

Haddad NM, Crutsinger GM, Gross K, et al. (2011) Plant Diversity and The Stability of Foodwebs. Ecology Letters 14(1): 42–46. doi: 10.1111/j.1461-0248.2010.01548.x.

Ratnadass A, Paula F, Jacques A, Robert H (2012) Plant Species Diversity for Sustainable Manage-ment of Crop Pests and Diseases in Agroecosys-tems: A Review. Agron. Sustain. Dev. 32: 273–303. doi: 10.1007/s13593-011-0022-4.

Zhao ZH, Hui C, Hardev S, et al. (2014) Responses of Cereal Aphids and Their Parasitic Wasps to Landscape Complexity. J. Econ. Entomol 107: 630–637. doi: 10.1603/EC13054.

Helantera H (2022) Supercolonies of Ants (Hyme-noptera: Formicidae): Ecological Patterns, Behav-ioural Processes and Their Implications for Social Evolution. Myrmecol News 32: 1-22. doi: 10.25849/myrmecol.news_032:001.

Way MJ, Islam Z, Heong KL, Joshi RC (1998) Ants in Tropical Irrigated Rice: Distribution and Abun-dance, Especially of Solenopsis geminata (Hyme-noptera: Formicidae). Bulletin of Entomological Re-search 88: 467–476. doi: 10.1017/S0007485300042218.

Vogt JT, Grantham RA, Smith WA, Arnold DC (2001) Prey of The Red Imported Fire Ant (Hy-menoptera: Formicidae) in Oklahoma Peanuts. En-vironmental Entomology 30(1): 123-128. doi: 10.1603/0046-225X-30.1.123.

Dejean A, Cereghino R, Leponce M (2015) The Fire Ant Solenopsis saevissima and Habitat Disturbance Alter Ant Communities. Biological Conservation 187: 145-153. doi: 10.1016/j.biocon.2015.04.012.

Frouz J. (2018) Effects of soil macro-and mesofau-na on litter decomposition and soil organic matter stabilization. Geoderma 332:161-172.

Pant M, Negi GC, Kumar P (2017) Macrofauna contributes to organic matter decomposition and soil quality in Himalayan agroecosystems, India. Applied Soil Ecology 120: 20-29.

Adriano S, Mininni AN, Ricciuti P (2020) Compar-ing the effects of soil fauna on litter decomposition and organic matter turnover in sustainably and conventionally managed olive orchards. Geoderma 372: 114393.

Barrocas HM, Da Gama MM, Sousa JP, Ferreria CS (1998) Impact of reafforestation with Eucalyptus globulus Labill. on the edaphic collembolan fauna of Serra de Monchique (Algarve, Portugal). Miscel· lània Zoològica. 9-23.

Dahlman RC, Garten Jr CT, Hakonson TE (1997) Comparative distribution of plutonium in contami-nated ecosystems at Oak Ridge, Tennessee and Los Alamos, New Mexico. No. CONF-770429-2. Oak Ridge National Lab., TN (USA); Los Alamos Scien-tific Lab., NM (USA).

Page HM, Lastra M, Rodil IF, Briones MJI, Garrido J (2010) Effects of non-native Spartina patens on plant and sediment organic matter carbon incor-poration into the local invertebrate communi-ty. Biological Invasions 12(11): 3825-3838.

Boros G. 2010. Enchytraeids (Oligochaeta, En-chytraeidae) from potting compost purchasable in the Hungarian retail trade. Opusc. Zool. Buda-pest. 41: 237-240.

Sabo JL, Soykan CU, Keller A (2005) Functional roles of leaf litter detritus in terrestrial food webs. Dynamic food webs: Multispecies assemblag-es, ecosystem development, and environmental change. Academic, Massachusetts, USA (también disponible en línea: http://www. public. asu. edu/~ jlsabo/pubs/Sabo_et_al_IN_PRESS_Litter_Chapter. pdf). 211-223.

Kühn J, Ruess L (2021) Effects of resource quality on the fitness of collembola fed single and mixed diets from the green and brown food chain. Soil Biology and Biochemistry 154: 108156.

Cameron EK, Knysh KM, Proctor HC, Bayne EM (2013) Influence of two exotic earthworm species with different foraging strategies on abundance and composition of boreal microarthropods. Soil Biology and Biochemistry 57: 334-340.

Cheng J, Wong MH (2008) Effects of earthworm (Pheretima sp.) on three sequential ryegrass har-vests for remediating lead/zinc mine tail-ings. International journal of phytoremediation. 10(3): 173-184.

Syaf H, Pattah MA, Kilowasid LMH (2021) Quality of soil from the nickel mining area of Southeast Su-lawesi, Indonesia, engineered using earthworms (Pheretima sp.). Journal of Degraded and Mining Lands Management. 8(4): 2995.

Golovatch SI (2015) Cave Diplopoda of southern China with reference to millipede diversity in Southeast Asia. ZooKeys. 510: 79.

Antić D, Vagalinski B, Stoev P, Akkari N (2022) A review of the cavernicolous Trichopolydesmidae (Diplopoda, Polydesmida) from the Carpathian-Balkan arch and the Rhodope Mountains, with de-scriptions of two new genera and three new spe-cies. ZooKeys. 1097.

Barker GM (2004) Millipedes (Diplopoda) and centipedes (Chilopoda) (Myriapoda) as predators of terrestrial gastropods. Natural enemies of ter-restrial molluscs. 405-426.

Wright JC (2012) Myriapoda (Including Centi-pedes and Millipedes). In: eLS. John Wiley & Sons, Ltd: Chichester.

Lövei GL, Sunderland KD (1996) Ecology and be-havior of ground beetles (Coleoptera: Cara-bidae). Annual review of entomology. 41(1): 231-256.

Herlinda S, Alesia M, Susilawati S, Irsan C et al. (2020) Impact of mycoinsecticides and abamectin applications on species diversity and abundance of aquatic insects in rice fields of freshwater swamps of South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 21(7).

Kalea AN, Kulshreshtha JP (1961) Studies on the biology and control of Lachnosterna consanguinea (Blanch.), a pest of sugarcane in Bihar (India). Bul-letin of Entomological Research 52(3): 577-587.

Sharma SK, Shinde VKR (1970) Control of Whitegrub Lachnosterna (Holotrichia) consan-guinea Blanch. (Coleoptera: Scarabaeidae). PANS Pest Articles & News Summaries 16(1): 176-179.

Misra SS (1995) White grub, Holotrichia (Lach-nosterna) coracea (Hope) - A key pest of potatoes in Himachal Pradesh (India). Journal of Entomo-logical Research 19(2): 181-182.

Gabel K, Gabhel M (2017) Biodeversity of Insect Affect on Rice Field and their Management in the Fingeshwar Region. International Journal of Sci-ence and Research (IJSR) 6(1): 979-984.

El-Sharabasy HM, Mahmoud MF, El-Bahrawy AF, et al. (2014) Food preference of the German cock-roach, Blattella germanica (L.) (Dictyoptera: Blat-tellidae). Cercetări Agronomice în Moldova 2(158): 81-88.

Schmidt JO, Schmidt LS (2022) Big, bad, and red: Giant velvet mite defenses and life strategies (Trombidiformes: Trombidiidae: Dinothrombium). Journal of Arachnology 50:175–180.

Way MJ, Khoo KC (1992) Role of ants in pest man-agement. Annu. Rev. Entomol. 37: 479-503.

Khoo KC, Ho CT (2009) The influence of Dolicho-derus thoracicus (Hymenoptera: Formicidae) on losses due to Helopeltis theivora (Heteroptera: Mir-idae), black pod disease, and mammalian pests in cocoa in Malaysia. Bulletin of Entomological Re-search 82(4): 485-491.

Abdullah T, Aminah SN, Kuswinanti T, et al. (2020) The role of ants (Hymenoptera: Formici-dae) in rice field. In IOP Conference Series: Earth and Environmental Science 486(1): 012167.

Amin MR, Khanjani M, Zahiri B (2014) Preimagi-nal development and fecundity of Gaeolaelaps acu-leifer (Acari: Laelapidae) feeding on Rhizoglyphus echinopus (Acari: Acaridae) at constant tempera-tures. Journal of Crop Protection 3 (5): 581-587.

Ajvad FT, Madadi H, Michaud JP, Zafari D, Khanja-ni M (2018) Life table of Gaeolaelaps aculeifer (Ac-ari: Laelapidae) feeding on larvae of Lycoriella au-ripila (Diptera: Sciaridae) with stage-specific esti-mates of consumption. Biocontrol Science and Technology 28(2): 157-171.

Pérez-Rodríguezab J, Calvoc J, Urbanejaa A, Tenaa A (2018) The soil mite Gaeolaelaps (Hypoaspis) aculeifer (Canestrini) (Acari: Laelapidae) as a predator of the invasive citrus mealybug Delotto-coccus aberiae (De Lotto) (Hemiptera: Pseudococ-cidae): Implications for biological control. Biological Control 127: 64-69.

Young OP, Edwards GB (1990) Spiders in United States field crops and their potential effect on crop pests. Journal of Arachnology 1-27.

Anusuyadevi P, Sevarkodiyone SP (202). Foraging activity of ants in open habitat of Elayirampannai, Tamil Nadu. Journal of Entomology and Zoology Studies 9(5): 442-445.

Rossi MN, Reigada C, Godoy WAC (2006) The ef-fect of hunger level on predation dynamics in the spider Nesticodes rufipes: a functional response study. Ecological research 21(5): 617-623.

Kellner RLL, Dettner K (1996) Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107(3): 293-300.

Way MJ, Islam Z, Heong KL, Joshi RC (1998) Ants in Tropical Irrigated Rice: Distribution and Abun-dance, Especially of Solenopsis geminata (Hyme-noptera: Formicidae). Bulletin of Entomological Re-search 88: 467–476.

Damasiewicz A, Leśniewska M (2002) Tygarrup javanicus (Chilopoda, Geophilomorpha)–an exotic species that has reached Poland. Polish Journal of Entomology 89(1): 52-58.

Downloads

Published

2024-02-09

Issue

Section

Articles