Lipid and Blood Pressure Lowering Effects of Mikania micrantha Through En-zymatic Inhibition

Lipid and Blood Pressure Lowering Potential of Mikania micrantha

Authors

  • Amirah Haziyah Ishak
  • Nurul Husna Shafie Dr
  • Norhaizan Mohd Esa
  • Hasnah Bahari

DOI:

https://doi.org/10.11594/jtls.13.02.05

Keywords:

Angiotensin-converting enzyme , HMG-CoA reductase, Hypertension, Lipase inhibition, Mikania micrantha, Pancreatic lipase

Abstract

Mikania micrantha Kunth (Asteraceae) is a plant traditionally used to reduce the risk of hyperlipidemia and hypertension. There is limited information on the anti-hyperlipidemic and anti-hypertensive effects of the various M. micrantha leaves and stem extracts. This study aimed to examine the in vitro potential of different parts of M. micrantha (leaves and stem) extracts in inhibiting hyperlipidemia-related enzymes, i.e., pancreatic lipase (PL), lipoprotein lipase (LPL) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), in addition to the hypertension-related, i.e., angiotensin-I converting enzyme (ACE). This study spectrophotometrically determined the inhibitory activities of hot water, cold water, 70% ethanol, and ethyl acetate M. micrantha leaves and stem extracts against the above-said enzymes using PL, LPL, HMGR, and ACE inhibition assays. The study found that the ethanol stem (ETS) extract exhibited the highest PL inhibitory activity (IC50=4.49±2.50 μg/mL), albeit the difference was insignificant (p > 0.05) compared to orlistat (IC50=0.31±0.01 μg/mL). Meanwhile, the ethanol leaves (ETL) extract yielded the highest LPL (IC50=1.42±0.48 μg/mL) and HMGR inhibitory activity (50.12±3.44%), although the greatest ACE inhibition was observed for the hot water stem (HWS) extract (97.47±1.19%). However, the result was insignificant (p > 0.05) compared to other extracts and captopril (98.42±0.93%). In brief, the extracts generally exhibited remarkable inhibitory activity against PL, LPL, HMGR, and ACE, thus conveying the M. micrantha extracts' anti-hyperlipidemic and anti-hypertensive potentials.

References

Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM (2021) Potential health benefits of plant food-derived bioactive components: An overview. Foods 10(4):1–25. doi: 10.3390/foods10040839.

Ishak AH, Shafie NH, Mohd Esa N, Bahari H (2016) Nutritional, pytochemical and pharmacological properties of Mikania micrantha Kunth. Pertanika Journal of Scholarly Research Reviews 2(3):123–32. doi: 10.17957/IJAB/15.0522.

Nurul Aini A, Al Farraj DA, Endarko E, Rubiyanto A, Nur H, Al Khulaifi MM, Hadibarata T, Syafiuddin A (2019) A new green method for the synthesis of silver nanoparticles and their antibacterial activities against gram-positive and gram-negative bacteria. Journal of the Chinese Chemical Society 66(7): 705-712. doi: 10.1002/jccs.201800412.

Ishak AH, Shafie NH, Mohd Esa N, Bahari H, Ismail A (2018) From weed to medicinal plant: Antioxidant capacities and phytochemicals of various extracts of Mikania micrantha. International Journal of Agriculture and Biology 20(3): 561-568. doi: 10.17957/IJAB/15.0522.

Chetia J, Upadhyaya S, Bora DK (2014) Screening of phytochemicals, antioxidant and antimicrobial activity of some tea garden weeds of Tinsukia, Assam. International Journal of Pharmaceutical Sciences Review and Research 26(33): 193-196.

Ríos E, León A, Chávez MI, Torres Y, Ramírez-Apan MT et al. (2014) Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia 94: 155–163. doi: 10.1016/j.fitote.2014.02.006.

Jyothilakshmi M, Jyothis M, Latha MS (2015) Antidermatophytic activity of Mikania micrantha Kunth : An invasive weed. Pharmacognosy Research 7(Suppl 1): 20–25. doi: 10.4103/0974-8490.157994.

Dou X, Zhang Y, Sun N, Wu Y, Li L (2014) The anti-tumor activity of Mikania micrantha aqueous extract in vitro and in vivo. Cytotechnology 66(1): 107–117. doi: 10.1007/s10616-013-9543-9.

Matawali A, Chin LP, Eng HS, Boon LH, Gansau JA (2016) In-vitro evaluation of anti-kinase, anti-phosphatase and cytotoxic activities of Mikania micrantha H.B.K. (Asteraceae) from Malaysia. Journal of Chemical and Pharmaceutical Sciences 9(2): 696–701.

Dong LM, Jia XC, Luo QW, Zhang Q, Luo B, Liu WB, Zhang X, Xu QL, Tan JW (2017) Phenolics from Mikania micrantha and their antioxidant activity. Molecules 22(7): 1140. doi: 10.3390/molecules22071140.

Dev UK, Hossain MT, Islam MZ (2015) Phytochemical investigation, antioxidant activity and anthelmintic activity of Mikania micrantha leaves. World Journal of Pharmaceutical Research 4(5): 121–33.

Zhang Y, Zeng YM, Xu YK, Wu SQ, Li S, Tian HY, Yin S (2019) New cadinane sesquiterpenoids from Mikania micrantha. Natural Product Research 34(19): 2729-2736. doi: 10.1080/14786419.2019.1586691.

Otsuka T, Takada H, Nishiyama Y, Kodani E, Saiki Y, Kato K, Kawada T (2016) Dyslipidemia and the risk of developing hypertension in a working-age male population. Journal of the American Heart Association 5(3): 1–9. doi: 10.1161/JAHA.115.003053.

Zodda D, Giammona R, Schifilliti S (2018) Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy 6(1): 10. doi: 10.3390/pharmacy6010010.

Ademosun AO, Oboh G, Passamonti S, Tramer F, Ziberna L, Boligon AA, Athayde ML (2015) Phenolics from grapefruit peels inhibit HMG-CoA reductase and angiotensin-I converting enzyme and show antioxidative properties in endothelial EA.Hy 926 cells. Food Science and Human Wellness 4(2): 80–85. doi: 10.1016/j.fshw.2015.05.002.

Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK (2014) Lipoprotein lipase: From gene to atherosclerosis. Atherosclerosis 237(2): 597–608. doi: 10.1016/j.atherosclerosis.2014.10.016.

Weber MA, Schiffrin EL, White WB, Mann S et al. (2014) Clinical practice guidelines for the management of hypertension in the community a statement by the American Society of Hypertension and the International Society of Hypertension. The Journal of Clinical Hypertension 16(1): 14–26. doi: 10.1111/jch.12237.

Alqahtani S, Qosa H, Primeaux B, Kaddoumi A (2015) Orlistat limits cholesterol intestinal absorption by Niemann-pick C1- like 1 (NPC1L1) inhibition. European Journal of Pharmacology 762: 263–269. doi: 10.1016/j.ejphar.2015.05.060.

Chogtu B, Magazine R, Bairy K (2015) Statin use and risk of diabetes mellitus. World Journal of Diabetes 6(2): 352–357. doi: 10.4239/wjd.v6.i2.352.

Okoro IO (2020) Effects of extraction solvents on the antioxidant and phytochemical activities of Manihot esculenta leaves. Iranian Journal of Toxicology 14(1): 51–58. doi: 10.32598/ijt.14.1.51.

Kamyab R, Namdar H, Torbati M, Ghojazadeh M, Araj-Khodaei M, Fazljou SMB (2021) Medicinal plants in the treatment of hypertension: A review. Advanced Pharmaceutical Bulletin 11(4): 601–617. doi: 10.34172/apb.2021.090.

Kim YS, Lee Y, Kim J et al. (2012) Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase in vitro and lipolysis in vivo. Evidence-Based Complementary and Alternative Medicine 2012: 878365. doi: 10.1155/2012/878365.

Saraphanchotiwitthaya A, Sripalakit P (2014) Effect of Morinda citrifolia Linn. leaf extracts on in vitro lipase activity. Chiang Mai Journal of Science 41(5–1): 1182–1193.

Iqbal D, Khan MS, Khan A, Khan MS, Ahmad S, Srivasta AK, Bagga P (2014) In vitro screening for β-hydroxy-β-methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions of Ficus palmata Forsk. BioMed Research International 2014: 762620. doi: 10.1155/2014/762620.

Ghanbari R, Zarei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N (2015) Angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidant activities of sea cucumber (Actinopyga lecanora) hydrolysates. International Journal of Molecular Sciences 16(12): 28870–28885. doi: 10.3390/ijms161226140.

Lin SH, Chang, DK, Chou MJ, Huang, KJ, Shiuan D (2015). Peptide inhibitors of human HMG-CoA reductase as potential hypocholesterolemia agents. Biochemical and Biophysical Research Communications 456(1): 104-109. doi: 10.1016/j.bbrc.2014.11.042.

Xie Y, Zhang W (2012) Antihypertensive activity of Rosa rugosa Thunb. flowers: Angiotensin I converting enzyme inhibitor. Journal of Ethnopharmacology 144(3): 562–566. doi: 10.1016/j.jep.2012.09.038.

Maqsood M, Ahmed D, Atique I, Malik W (2017) Lipase inhibitory activity of Lagenaria siceraria fruit as a strategy to treat obesity. Asian Pacific Journal of Tropical Medicine 10(3): 305–310. doi: 10.1016/j.apjtm.2017.03.010.

Loizzo MR, Marrelli M, Pugliese A, Conforti F, Nadjafi F, Menichini F, Tundis, R (2016) Crocus cancellatus subsp. damascenus stigmas: Chemical profile, and inhibition of amylase, glucosidase and lipase, key enzymes related to type 2 diabetes and obesity. Journal of Enzyme Inhibition and Medicinal Chemistry 31(2): 212–218. doi: 10.3109/14756366.2015.1016510.

Bustanji Y, Issa A, Mohammad M, Hudaib M, Tawah K, Alkhatib H, Almasri I, Al-Khalidi B (2010) Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. Journal of Medicinal Plants Research 4(21): 2235–2242. doi: 10.5897/JMPR10.399.

Lunagariya NA, Patel NK, Jagtap SC, Bhutani KK (2014) Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI Journal 13(2014):897–921.

Khatun R, Roy S, Abdur Rahman MA (2017) In vitro comparative evaluation of anti-inflammatory and thrombolytic activity of three Mikania species available in Bangladesh. ournal of Pharmacognosy and Phytochemistry 6(5): 1007–1011.

Tallarida RJ (2011) Quantitative methods for assessing drug synergism. Genes & Cancer 2(11): 1003-1008. doi: 10.1177/1947601912440575.

Kumari A, Kristensen KK, Ploug M, Lund Winther AM (2021) The importance of lipoprotein lipase regulation in atherosclerosis. Biomedicines 9(7): 1–24. doi: 10.3390/biomedicines9070782.

Abdul Rahman H, Saari N, Abas F, Ismail A, Mumtaz MW, Abdul Hamid A (2017) Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. International Journal of Food Properties 20(11): 2616-2629. doi: 10.1080/10942912.2016.1247098.

Wang J, Geng S, Wang B, Shao Q, Fang Y, Wei Y (2017) Magnetic nanoparticles and high-speed countercurrent chromatography coupled in-line and using the same solvent system for separation of quercetin-3-O-rutinoside, luteoloside and astragalin from a Mikania micrantha extract. Journal of Chromatography A 1508: 42–52. doi: 10.1016/j.chroma.2017.05.062.

Pak-Dek MS, Abdul Hamid A, Osman A, Soh CS (2008) Inhibitory effect of Morinda citrifolia L. on lipoprotein lipase activity. Journal of Food Science 78(8): 595–598. doi: 10.1111/j.1750-3841.2008.00929.x.

Liang G, Kou H, Wang TT, Guo Y, Ping J, Wang H (2015) Optimization, validation and application of spectrophotometric assay for 3-hydroxy-3-methylglutarylcoenzyme A reductase activity. Tropical Journal of Pharmaceutical Research 14(4): 671–677. doi: 10.4314/tjpr.v14i4.16.

Gesto DS, Pereira CMS, Cerqueira NMFS, Sousa SF (2020) An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules 25(17): 3891. doi: 10.3390/molecules25173891.

Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY (2015) HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy 9: 509–517. doi: 10.2147/DDDT.S75056.

Pichandi S, Pasupathi P, Raoc YY, Farook J, Ambika A, Ponnusha BS (2011) The role of statin drugs in combating cardiovascular diseases. International Journal of Current Science and Research 1(2): 47–56.

Ibrahim A, Shafie NH, Mohd Esa N, Shafie SR, Bahari H, Abdullah MA (2020) Mikania micrantha extract inhibits HMG-CoA reductase and ACAT2 and ameliorates hypercholesterolemia and lipid peroxidation in high cholesterol‐fed rats. Nutrients 12(10): 3077. doi: 10.3390/nu12103077.

Wei X, Huang H, Wu P, Cao H, Ye W (2004) Phenolic constituents from Mikania micrantha. Biochemical Systematics and Ecolog 32(11): 1091–1096.

Balasuriya BN, Rupasinghe HV (2011) Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health and Disease 1(5): 172–188. doi: 10.31989/ffhd.v1i5.132.

Madhesh M, Vaiyapuri M (2013) Luteolin a dietary flavonoid attenuates isoproterenol-induced myocardial oxidative stress in rat myocardium : An in vivo study. Biomedicine & Preventive Nutrition 3(2): 159–164. doi: 10.1016/j.bionut.2013.01.002.

Deo P, Hewawasam E, Karakoulakis A, Claudie DJ, Nelson R, Simpson BS, Smith NM, Semple SJ (2016) In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complementary and Alternative Medicine 16(1): 1–11. doi: 10.1186/s12906-016-1421-5.

Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini F (2007) Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytotherapy research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 21(1): 32–36. doi: 10.1002/ptr.2008.

Sharifi N, Souri E, Ziai SA, Amin G, Amanlou M (2013) Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay DARU Journal of Pharmaceutical Sciences 21(1): 1-8. doi: 10.1186/2008-2231-21-74.

Sakulnarmrat K, Srzednicki G, Konczak I (2014) Composition and inhibitory activities towards digestive enzymes of polyphenolic-rich fractions of Davidson’s plum and quandong. LWT-Food Science and Technology 57(1): 366–75. doi: 10.1016/j.lwt.2014.01.002.

Sakulnarmrat K, Konczak I (2012) Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chemistry 134(2): 1011–1019. doi: 10.1016/j.foodchem.2012.02.217.

Alridiwirsah, Tampubolon K, Zulkifli TBH, Risnawati, Yusuf M (2022) Allelopathic effects of Mikania micrantha Kunth on barnyardgrass and lowland rice. Pesquisa Agropecuária Tropical 53(2): 2022. doi: 10.1590/1983-40632022v5271356.

Ruan X, Wang Z, Su Y, Wang T (2022) Full-length transcriptome analysis of multiple organs and identification of adaptive genes and pathways in Mikania micrantha. Scientific Reports 12(1): 3272. doi: 10.1038/s41598-022-07198-0.

Adefegha SA, Olasehinde TA, Oboh G (2017) Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species. Journal of Oleo Science 66(1): 51–63. doi: 10.5650/jos.ess16029.

Al Shukor N, Van Camp J, Gonzales GB et al. (2013) Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. Journal of Agricultural and Food Chemistry 61(48): 11832–11839. doi: 10.1021/jf404641v.

Chaudhary SK, De A, Bhadra S, Mukherjee PK (2015) Angiotensin-converting enzyme (ACE) inhibitory potential of standardized Mucuna pruriens seed extract. Pharmaceutical Biology 53(11): 1614–1620. doi: 10.3109/13880209.2014.996820.

Downloads

Published

2023-05-25

Issue

Section

Articles