Antimicrobial Activity of Bacterial Strains Isolated from Macrotermes belli-cosus Termite Mound

Antimicrobial Activity of Bacterial Strains Isolated from Macrotermes bellicosus


  • Benewindé Joseph Sawadogo Faculty of Earth and Life Sciences, Université Nazi BONI
  • Sandrine E T Hien Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso
  • Dagoro Palé Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso
  • Ynoussa Maïga Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso
  • Mahamadi Nikièma University of Fada N’Gourma, 01 BP 54 Fada N’Gourma, Burkina Faso
  • Iliassou Mogmenga University Center of Banfora, University Nazi BONI, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
  • Yerobessor Dabiré Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso
  • Cheik A T Ouattara Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso
  • Aboubakar S Ouattara Laboratory of Microbiology and Microbial Biotechnology, CRSBAN, University Joseph KI-ZERBO, 03 BP 7131 Ouagadougou, Burkina Faso



actinobacteria, Antibacterial activity, antifungal activity, Bacteria, Macrotermes bellicosus, Termite mound material


Natural environments like termite mounds can be a reservoir for novel microbial strains and antimicrobial metabolite producers. Hence, this study aimed to investigate the antimicrobial activities of bacterial strains isolated from Macrotermes bellicosus (M. bellicosus) termite mound materials. These materials were sampled from active termite mounds in the Somgandé botanic reserve in Ouagadougou, Burkina Faso. The study collected sixty-three bacterial isolates and assessed their antimicrobial activity against several pathogenic bacteria (Bacillus subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Staphylococcus aureus) and two pathogenic fungi (Aspergillus niger and Candida albicans). The dual culture and paper disc diffusion assays revealed that 10 isolates (5 bacteria and 5 actinobacteria) inhibited the growth of at least one pathogenic microorganism. In comparison, four isolates inhibited both Gram-positive and Gram-negative bacteria. Overall, isolates MBm2, MBm8 (bacteria), and MBm26 (actinobacterium) displayed better antibacterial- and antifungal activity against all tested pathogenic microorganisms. It is germane to indicate here that several typical bacteria and actinobacteria isolated from the M. bellicosus termite mound materials were good producers of antibacterial and antifungal agents. Thus, future studies could further characterize these isolates and optimize their growth for producing antimicrobial compounds. The bioactive compounds should also be identified for further biotechnological applications.


Zaffiri L, Gardner J, Toledo-Pereyra LH (2012) Histo-ry of Antibiotics. From Salvarsan to Cephalosporins. Journal of Investigative Surgery 25 (2): 67-77. doi: 10.3109/08941939.2012.664099.

Aminov R (2017) History of antimicrobial drug dis-covery: Major classes and health impact. Biochemical Pharmacology 133 (1): 4-19. doi: 10.1016/j.bcp.2016.10.001.

Hutchings MI, Truman AW, Wilkinson B (2019) An-tibiotics: past, present and future. Current Opinion in Microbiology 51: 72–80. doi: 10.1016/j.mib.2019.10.008.

Fair RJ, Tor Y (2014) Antibiotics and bacterial re-sistance in the 21st century. Perspectives in Medecinal Chemistry 28 (6): 25–64. doi: 10.4137/PMC.S14459.

Sharma D, Kaur T, Chadha BS, Manhas RK (2011) Antimicrobial activity of actinomycetes against mul-tidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Phar-maceutical Research 10 (6): 801-808. doi: doi: 10.4314/tjpr.v10i6.14.

Trevino SE, Kollef MH (2015) Management of Infec-tions with Drug-Resistant Organisms in Critical Care: An Ongoing Battle. Clinics in Chest Medecine 36 (3): 531–41. doi: 10.1016/j.ccm.2015.05.007.

Lewis K (2013) Platforms for antibiotic discovery. Nature Reviews Drug Discovery 12 (5): 371–87. doi: 10.1038/nrd3975.

Fatope MO, Al-Kindi MZS, Abdulnour OA (2000) Research trends: Natural products as pest, microbial disease and tumour control agents. Science and Technology, Special Review 5: 55-71. doi: 10.24200/squjs.vol5iss0pp55-71.

Newman DJ, Cragg GM, Snader KM (2003) Natural products as a source of new drugs over the period 1981-2002. Journal of Natural Products 66 (7): 1022-37. doi: 10.1021/np030096l.

Dimri AG, Chauhan A, Aggarwal ML (2020) Antibi-otic potential of actinomycetes from different envi-ronments against human pathogens and microor-ganisms of industrial importance: a review. Science Archives 1 (1) : 7-24. doi: doi: 10.47587/SA.2020.1102.

van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews 41 (3): 392–416. doi: 10.1093/femsre/fux005.

Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Vilcinskas, A. (eds) Insect Biotechnology. Biologically-Inspired Systems. Dordrecht, Springer. 95-119. doi: 10.1007/978-90-481-9641-8_6.

Beemelmanns C, Guo H, Rischer M, Poulsen M (2016) Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry 12: 314–327. doi: 10.3762/bjoc.12.34.

Krishanti NPRA, Zulfiana D, Wikantyoso B et al (2018) Antimicrobial production by an actinomy-cetes isolated from the termite nest. Journal of Trop-ical Life Science 8 (3): 279–288. doi: 10.11594/jtls.08.03.10.

Matsui T, Tanaka J, Namihira T, Shinzato N (2012) Antibiotics production by an actinomycete isolated from the termite gut. Journal of Basic Microbiology 52 (6): 731–735. doi: doi: 10.1002/jobm.201100500.

De Simeis D, Serra S (2021) Actinomycetes: A never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics 10 (5): 483. doi: 10.3390/antibiotics10050483.

Procópio REL, Da Silva I.R, Martins MK et al. (2012) Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases 16 (5): 466–71. doi: 10.1016/j.bjid.2012.08.014.

Kumari N, Menghani E, Mithal R (2020) Bioactivity assessment of potentially active actinomycetes from rhizospheric soil. Journal of Scientific and Industrial Research 79 (8): 712–716.

Nandika D, Karlinasari L, Arinana A et al. (2021) Chemical components of fungus comb from Indo-Malayan termite Macrotermes gilvus Hagen mound and its bioactivity against wood- staining fungi. For-ests 12 (11): 1591. doi: doi: 10.3390/f12111591.

Otani S, Challinor VL, Kreuzenbeck NB et al. (2019) Disease-free monoculture farming by fungus-growing termites. Scientific Reports 9: 8819. doi: 10.1038/s41598-019-45364-z.

Witasari LD, Wahyu KW, Anugrahani BJ et al. (2022) Antimicrobial activities of fungus comb ex-tracts isolated from Indo-Malayan termites Macro-termes gilvus mound. AMB Express 12 (1): 14. doi: 10.1186/s13568-022-01359-0.

Zhang YL, Li S, Jiang G-H et al. (2013) Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. Journal of Ag-ricultural and Food Chemistry 61 (7): 1521−4. doi: 10.1021/jf305210u.

Um S, Fraimout A, Sapountzis P et al (2013) The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Scientific Reports 3 : 3250. doi : doi: 10.1038/srep03250.

Mahdi DH, Hubert J, Renault J-H et al. (2020) Chem-ical profile and antimicrobial activity of the fungus-growing termite strain Macrotermes Bellicosus used in traditional medicine in the Republic of Benin. Molecules 25 (21): 5015. doi: 10.3390/molecules25215015.

Sujada N, Sungthong R, Lumyong S (2014) Termite nests as an abundant source of cultivable Actinobac-teria for biotechnological purposes. Microbes and Environments 29 (2): 211–219. doi: 10.1264/jsme2.ME13183.

Braga FG, Bouzada MLM, Fabri RL et al. (2007) Antil-leishmanial and antifungal activity of plants used in traditional medicine in Brazil. Journal of Eth-nopharmacology 111 (2): 396-402. doi: 10.1016/j.jep.2006.12.006.

Quintana E, Gil-Rivera D, Alejo-Viderique A et al. (2015) Evaluation of the antifungal and antiyeast activities from recently isolated Streptomycetes. Journal of Pharmaceutical and Biomedical Sciences 5 (11): 867–876.

Salehghamari E, Soleimani M, Tafacori V (2015) Antibacterial activity of some actinomycetes isolated from soils of Alborz province, Iran. Progress in Bio-logical Sciences 5 (2): 159–167. doi: 10.22059/PBS.2015.55526.

Islam MR, Jeong YT, Ryu YJ et al. (2009) Isolation, identification and optimal culture conditions of Streptomyces albidoflavus C247 producing antifun-gal agents against Rhizoctonia solani AG2-2. Mycobi-ology 37 (2): 114–120. doi: 10.4489/MYCO.2009.37.2.114.

Devi R, Thakur R, Gupta M (2018) Isolation and molecular characterization of bacterial strains with antifungal activity from termite mound soil. Interna-tional Journal of Current Microbiology Applied Sci-ences 7 (4): 1–7. doi : doi: 10.20546/ijcmas.2018.704.001.

Fokkema NJ (1973) The role of saprophytic fungi in antagonism against Drechslera sorokiniana (Helmin-thosporium sativum) on agar plates and on rye leaves with pollen. Physiological Plant Pathology 3 (2): 195–205. doi: doi: 10.1016/0048-4059(73)90082-9.

Benndorf R, Guo H, Sommerwerk E et al (2018) Natural products from actinobacteria associated with fungus-growing termites. Antibiotics 7 (3): 83. doi: 10.3390/antibiotics7030083.

Salehghamari E, Najafi M (2016) Isolation of biologi-cally active Actinomycetes from untouched soils: a case study from Karaj district, Iran. Progress in Bio-logical Sciences 6 (1): 65-74. doi: 10.22059/PBS.2016.59009.

Kumar A, Pragati S, Shrivastava JN (2009) Produc-tion of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian Journal of Experi-mental Biology 47 (1): 57-62.

Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pa-thology 45 (4): 493–6.

Ayitso AS, David MO, Samuel OW (2015) Antimicro-bial activities of microorganisms obtained from the gut of Macrotermes michaelseni in Maseno, Kenya. Journal of Applied Biology and Biotechnology 3 (06): 048-052. doi: 10.7324/JABB.2015.3608.

Benabdallah AM (2014) Screening de souches ex-trêmophiles halophiles du genre Bacillus de la Sebkha D’Oran (caractérisation phénotypique). Mas-ter thesis. University of Tlemcen, Biology Depart-ment.

Belferkh A, Megoura M (2016) Isolement des acti-nomycètes à partir d’un sol Saharien et d’une Sebkha de la région d’El-Oued et mise en évidence de leur capacité à dégrader quelques pesticides. Master thesis. University of Frères Mentouri Con-stantine, Microbiology Department.

Traoré S (2020) Isolement et caractérisation d’actinomycètes productrices de substances antimi-crobiennes à partir d’échantillons de sol prélevés dans la ville de Ouagadougou. Master thesis. Univer-sity Joseph KI-ZERBO, Biochemistry and Microbiolo-gy Department.

Habibeche L (2013) Isolement et sélection de souches d’actinomycètes productrices d’antibiotiques. Master thesis. University Abder-rahmane Mira de Bejaia, Microbiology Department.

Kumar PS, Duraipandiyan V, Ignacimuthu S (2014) Isolation, screening, and partial purification of anti-microbial antibiotics from soil Streptomyces sp. SCA 7. The Kaohsiung Journal of Medical Sciences 30 (9): 435–46. doi: 10.1016/j.kjms.2014.05.006.

Khucharoenphaisan K, Sripairoj N, Sinma K (2012) Isolation and identification of actinomycetes from termite's gut against human pathogens. Asian Jour-nal of Animal and Veterinary Advances 7 (1): 68-73. doi: 10.3923/ajava.2012.68.73.

El-khawaga MA, Megahed MMM (2012) Antibacte-rial and insecticidal activity of actinomycetes isolated from sandy soil of (Cairo-Egypt). Egyptian Academic Journal of Biological Sciences, G. Microbiology 4 (1): 53–67. doi: 10.21608/eajbsg.2012.16661.

Hozzein WN, Rabie W, Ali MIA (2011) Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of new desert Streptomyces strain. African Journal of Bio-technology 10 (12): 2295-2301.

Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Bio-logical Sciences 4 (5): 330 – 337. doi: 10.7150/ijbs.4.330.

Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Procceed-ings of the Royal Society B 280: 20131885. doi: doi: 10.1098/rspb.2013.1885.

Duraipandiyan V, Sasi AH, Islam VIH et al. (2010) Antimicrobial properties of actinomycetes from the soil of Himalaya. Journal de Mycologie Médicale 20 (1): 15–20. doi: doi: 10.1016/j.mycmed.2009.11.002.

Kroiss J, Kaltenpoth M, Schneider B et al. (2010) Symbiotic Streptomycetes provide antibiotic combi-nation prophylaxis for wasp offspring. Nature Chem-ical Biology 6 (4): 261–263. doi: 10.1038/nchembio.331.

Visser AA, Kooij PW, Debets AJM, et al. (2011) Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living rela-tives. Fungal Ecology 4 (5): 322–332. doi: doi: 10.1016/j.funeco.2011.05.003.

Arasu M, Valan Duraipandiyan V, Agastian P, Igna-cimuthu S (2008) Antimicrobial activity of Strepto-myces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. Journal de Mycologie Médicale 18 (3): 147-153. doi: doi: 10.1016/j.mycmed.2008.07.004.

Iwai Y, Omura S., (1982) Culture conditions for screening of new antibiotics. The Journal of Antibiot-ics 35 (2): 123–41. doi: 10.7164/antibiotics.35.123.

Ruiz B, Chávez A, Forero A et al (2010) Production of microbial secondary metabolites: Regulation by the carbon source. Critical Reviews in Microbiology 36 (2): 146–67. doi: 10.3109/10408410903489576.

Tanaka Y, Taki A, Masuma R, Omura S (1986) Mechanism of nitrogen regulation of protylonolide biosynthesis in Streptomyces fradiae. The Journal of Antibiotics 39 (6): 813–21. doi: 10.7164/antibiotics.39.813.

Matsui T, Tanaka J, Namihira T, Shinzato N (2012) Antibiotics production by an actinomycete isolated from the termite gut. Journal of Basic Microbiology 52 (6): 731-735. doi: doi: 10.1002/jobm.201100500.

Nagam V, Aluru R, Shoaib M et al. (2021) Diversity of fungal isolates from fungus‐growing termite Ma-crotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. Insect Science 28 (2): 392–402. doi: 10.1111/1744-7917.12799.

Hyodo F, Inoue T, Azuma JI et al. (2000) Role of the mutualistic fungus in lignin degradation in the fun-gus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biology and Biochemistry 32 (5): 653–658. doi: doi: 10.1016/S0038-0717(99)00192-3.

Hyodo F, Tayasu I, Inoue T et al. (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macro-termitinae: Isoptera). Functional Ecology 17 (2): 186–193. doi: doi: 10.1046/j.1365-2435.2003.00718.x.