Next-Generation Sequencing of the Microbial Community Profile In Free-Range Chicken (Gallus gallus domesticus) Cecum from East Nusa Tenggara Province

Microbial community profile in free-range chicken (Gallus gallus domesticus) cecum

Authors

  • Eufrasia Reneilda Arianti Lengur Universitas Katolik Widya Mandira Kupang
  • Yoga Dwi Jatmiko Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Endang Arisoesilaningsih Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Eko Widodo Department of Nutrition Animal and Feed, Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, Indonesia

DOI:

https://doi.org/10.11594/jtls.13.02.13

Keywords:

Cecum, Diversity, Firmicutes, Free-range chicken, Next-generation sequencing

Abstract

Free-range chicken is livestock reared to support the humans' need for protein alongside its ritualistic use in traditional medicine to treat diseases. This study investigates the diversity of bacterial communities in the free-range chicken cecum reared in different East Nusa Tenggara Province localities comprising Sambi 1, Sambi 2 villages, Labuan Bajo, and Kupang City. The extracted chromosomal DNA was subjected to next-generation sequencing using the V3-V4 region primers. Results revealed that the Kupang chicken cecum had the highest total tags, while the Sambi 2 village recorded the lowest. Similarly, Sambi 2 chicken cecum exhibited the highest unique tags (6662) and OTUs number (1261), while the Kupang samples gave the lowest at 2550 and 745, respectively. The Shannon diversity index for bacterial diversity demonstrated that cecum samples from Labuan Bajo (5.679) were more diverse than Sambi 1 (5.378), Sambi 2 (5.653), and Kupang samples (3.77). The bacteria with the highest dominance index (0.935) was found in Sambi 2, while the lowest was observed in the Kupang samples (0.082). The three bacterial phyla showing the highest relative abundance were those from Sambi 1, Sambi 2, and Labuan Bajo cecum samples, comprising Firmicutes, Bacteroidota, and Actinobacteriota.Conversely, the Kupang samples showed an abundance of Firmicutes, Bacteroidota, and Campilobacterota, compared to the Lactobacillus-dominated Kupang, Sambi 1, and Sambi 2 chicken cecum samples. The highest relative abundance for Bifidobacterium occurred in Sambi 1 and Sambi 2 chicken cecum samples, the Kupang samples were Campylobacter dominated, and Olsenella was abundant in the Labuan Bajo samples. Intriguingly, the bacterial composition in the tested chicken cecum samples largely comprised beneficial bacteria such as the lactic acid bacteria group. This bacterial group can be further characterized for obtaining probiotic cultures that could improve the health of free-range chickens.

Author Biographies

  • Yoga Dwi Jatmiko, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

    Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

  • Endang Arisoesilaningsih, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

    Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

  • Eko Widodo, Department of Nutrition Animal and Feed, Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145, Indonesia

    Department of Nutrition Animal and Feed, Faculty of Animal Sciences, Universitas Brawijaya, Malang 65145,

    Indonesia

References

Central Bureau of statistics (2020) Populasi Unggas Menurut Kabupaten/Kota (Ekor), 2018-2020. https://ntt.bps.go.id/indicator/24/593/1/populasi-unggas-menurut-kabupaten-kota.html. Accesed date: January 2022.

Sulandari S, Zein MS, Astuti D, Sartika T (2009) Genetic polymorphisms of the chicken antiviral Mx gene in a va-riety of Indonesian indigenous chicken breeds. Jurnal Veteriner 10: 50-56.

Nataamijaya AG (2010) Pengembangan potensi ayam lokal untuk menunjang peningkatan kesejahteraan petani. Jurnal Litbang Pertanian 29: 131-138.

Lan, PTN, Sakamoto M, Benno Y (2004) Effect of two probiotic Lactobacillus strains on jejunal and cecal micro-biota of broiler chicken under acute heat stress condition as revealed by moleculer analysis of 16S rRNA genes. Microbiology Immunology 48: 917-929.

Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Re-view. International Journal of Food Microbiology 141: S15-S28.

Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poultry Science 82: 627-631.

Vargas-Rodriguez LM, Duran-Melendez LA, Garcia-Masias J A et al (2013) Effect of probiotic and population density on the growth performance and carcass character-istics in broiler chickens. International Journal of Poultry Science 12: 390-395.

Jannah, S, Dinoto A, Wiryawan KG, Rusmana I (2014) Characteristics of lactic acid bacteria isolated from gastro-intestinal tract of Cemani chicken and their potential use as probiotics. Media Peternakan 37: 143 214.

Jannah SN, Wiryawan KG, Dinoto A et al (2016) Molec-ular diversity pattern of intestinal lactic acid bacteria in Cemani chicken, Indonesian native chicken, as revealed by terminal restriction fragment length polymorphisms. Malaysian Journal of Microbiology 12 (1): 102-111.

Zhu, XY, Zhong T, Pandya Y, Joerger RD (2002) 16S rRNA-based analysis of microbiota from the cecum of broiler chicken. Applied and Environmental Microbiology 68: 124-137.

Gong J, Forster R.J, Yu H et al (2002) Molecular analy-sis of bacterial populations in the ileum of broiler chick-ens and comparison with bacteria in the cecum. FEMS Microbiology Ecology 41: 171- 179.

Lu J, Idris U, Harmon B et al (2003) Diversity and suc-cession of the intestinal bacterial community of the matur-ing broiler chicken. Applied and Environmental Microbi-ology 69: 6816-6824.

Lan PTN, Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiology Im-munology 46: 371-382.

Rizzo JM, Buck MJ (2012) Key principles and clinical applications of" next-generation" DNA sequencing. Can-cer Prev Res (Phila) 5 (7): 887-900. doi: 10.1158/1940-6207. CAPR-11-0432.

Rashid Z, Gilani SMH, Ashraf A et al (2020) Benchmark taxonomic classification of chicken gut bacteria based on 16S rRNA gene profiling in correlation with various feeding strategies. Journal of King Saud University – Sci-ence 32: 1034–1041.

Klindworth A, Pruesse E, Schweer T et al (2013) Evalua-tion of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diver-sity studies. Nucleid Acid Research 41 (1): 1-14. doi:10.1093/nar/gks808.

Alcon-Giner C, Dalby MJ, Caim S et al (2020) Microbio-ta Supplementation with Bifidobacterium and Lactobacil-lus Modifies the Preterm Infant Gut Microbiota and Metabolome: An Observational Study. Cell Rep Med. 1:100077.

Crusell MKW, Hansen TH, Nielsen T, et al (2020) Com-parative Studies of the Gut Microbiota in the Offspring of Mothers With and Without Gestational Diabetes. Front Cell Infect Microbiological 10. https://doi.org/10.3389/fcimb.2020.536282.

Soderborg TK, Clark SE, Mulligan CE et al (2018) The gut microbiota in infants of obese mothers increases in-flammation and susceptibility to NAFLD. Nat Commun. 9: 4462.

Takewaki D, Suda W, Sato W et al (2020) Alterations of the gut ecological and functional microenvironment in dif-ferent stages of multiple sclerosis. Proc Natl Acad Sci. 117: 2–12.

Claesson MJ, Wang Q, O'Sullivan O, et al (2010) Com-parison of two next-generation sequencing technologies for resolving highly complex microbiota composition us-ing tandem variable 16S rRNA gene regions. Nucleic Ac-ids Res. 38: 200–200.

Chen Z, Hui PC, Hui M et al (2019) Impact of Preserva-tion Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling. mSystems. 4. https://doi.org/10.1128/mSystems.00271-18.

Kameoka S, Motooka D, Watanabe S et al (2021) Benchmark of 16S rRNA gene amplicon sequencing us-ing Japanese gut microbiome data from the V1–V2 and V3–V4 primer sets. BMC Genomics 22:527. https://doi.org/10.1186/s12864-021-07746-4.

Bjerrum L, Engberg RM, Leser TD, Jensen BB et al (2006) Microbial Community Composition of the Ileum and Cecum of Broiler Chickens as Revealed by Molecular and Culture-Based Techniques. Poultry Science 85:1151–1164.

Bukin YS, Galachyants YP, Morozov IV et al (2019) Data Descriptor: The effect of 16S rRNA region choice on bacterial community metabarcoding results. Scientific data 6: 190007. https://doi.org/10.1038/sdata.2019.7.

Schloss PD, Westcott SL, Ryabin T et al (2009) Introduc-ing mothur: open-source, platform-independent, commu-nity-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.

Schloss PD, Handelsman J (2006) Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl. Environ. Microbiol. 72: 6773-6779.

Clarke SF, Murphy EF, O'Sullivan O et al (2014) Exer-cise and associated dietary extremes impact on gut micro-bial diversity. Gut 63:1913–1920.

Yadav S, Caliboso KD, Nanquil JE et al (2021) Cecal microbiome profile of Hawaiian feral chickens and pas-ture-raised broiler (commercial) chickens determined us-ing 16S rRNA amplicon sequencing. Poultry Science 100: 101181. https://doi.org/10.1016/j.psj.2021.101181.

Rodrigues DR, Winson E, Wilson KM et al (2020) Intes-tinal pioneer colonizers as drivers of ileal microbial com-position and diversity of broiler chickens. Front. Micro-biol. 10:2858.

Stanley D, Geier MS, Denman SE et al (2013) Identifica-tion of chicken intestinal microbiota correlated with the ef-ficiency of energy extraction from feed. Vet. Microbiol. 164:85–92.

Xu Y, Yang H, Zhang L et al (2016) High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. BMC Mi-crobiol 16:1–9.

Pandit RJ, Hinsu AT, Patel NV et al (2018) Microbial diversity and community composition of caecal microbio-ta in commercial and indigenous Indian chickens deter-mined using 16s rDNA amplicon sequencing. Microbi-ome 6:115.

Guo S, Liu I, Lei J et al (2021) Modulation of intestinal morphology and microbiota by dietary Macleaya cordata extract supplementation in Xuefeng Black-boned Chick-en. Animal 15: 100399. https://doi.org/10.1016/j.animal.2021.100399.

Wang H, Qin X, Mi S et al (2019) Contamination of yellow-feathered broiler carcasses: Microbial diversity and succession during processing. Food Microbiology, 83, 18–26.

Ballou AL, Ali RA, Mendoza MA et al (2016) Develop-ment of the Chick Microbiome: How Early Exposure In-fluences Future Microbial Diversity. Front. Vet. Sci. 3: 2.

Kubasova T, Kollarcikova M, Crhanova M et al (2019) Contact with adult hen affects development of caecal mi-crobiota in newly hatched chicks. PLoS ONE 14: 0212446.

Carrasco JMD, Casanova NA, Miyakawa MEF et al (2019) Microbiota, Gut Health and Chicken Productivity: What Is the Connection?. Microorganisms 7: 374. https://doi:10.3390/microorganisms7100374.

Stevenson DM, Weimer PJ (2007) Dominance of Prevotellaand low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantifi-cation real-time PCR. Applied Microbiology & Biotech-nology 83: 987–988.

Peng S, Yin JG, Liu XL et al (2015) First insights into the microbial diversity in the omasum and reticulum of bovine using Illumina sequencing. Journal of Applied Genetics 56, 393–401.

Banerjee SA, Sar A, Misra S et al (2018) Increased productivity in poultry birds by sub-lethal dose of antibi-otics is arbitrated by selective enrichment of gut microbio-ta, particularly short-chain fatty acid producers. Microbi-ology 164: 142–153.

Xi Y, Shuling N, Kunyuan T et al (2019) Characteristics of the intestinal flora of specific pathogen free chickens with age. Microbial Pathogenesis. doi:10.1016/j.micpath.2019.05.014.

Oakley BB, Lillehoj HS, Kogut MH et al (2014) The chicken gastrointestinal microbiome, FEMS Microbiol. Lett. 360: 100–112.

Lamendella R, Domingo JW, Ghosh S et al (2011) Com-parative fecal metagenomics unveils unique functional ca-pacity of the swine gut. BMC Microbiol. 11: 103.

Taha M, Foda M, Shahsavari E et al (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 38: 190–197.

Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat. Prod. Rep. 32: 738–751.

Zhao Y, Lu Q, Wei Y et al (2016) Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresource Technology 219: 196–203. http://dx.doi.org/10.1016/j.biortech.2016.07.117.

Xiao S, Mi J, Mei L et al (2021) Microbial Diversity and Community Variation in the Intestines of Layer Chickens. Animals 11: 840. https://doi.org/10.3390/ani11030840.

Nuobariene L, Cizeikiene D, Gradzeviciute E et al (2015) Phytase-active lactic acid bacteria from sourdoughs: Isola-tion and identification. Lwt Food Sci. Technol. 63: 766–772.

Liu HB, Zeng XF, Zhang GL et al (2019) Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol. 17: 15.

Gao P, Ma C, Sun Z et al (2017) Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota matu-ration in broiler chicken. Microbiome 5: 91.

Yang Y, Iji PA, Choct M (2009) Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. Worlds Poultry Science Journal 65: 97–114.

Thitaram SN, Chung CH, Day DF et al (2005) Iso-maltooligosaccharide Increases Cecal Bifidobacterium Population in Young Broiler Chickens. Poultry Science 84: 998–1003.

Isolauri E, Sutas Y, Kankaanpaa P et al (2001) Probiotics: Effects on immunity. American Journal of Clinical Nutri-tion 73: 444S–450S.

Józefiak A, Benzertiha A, Kieronczyk B et al (2020) Im-provement of cecal commensal microbiome following the insect additive into chicken diet. Animals 10: 577. http://doi:10.3390/ani10040577.

Dauksiene A , Ruzauskas M, Gruzauskas R et al (2021) A comparison study of the cecum microbial profiles, productivity and production quality of broiler chickens fed supplements based on medium chain fatty and organic acids. Animals 11: 610. https://doi.org/10.3390/ani11030610.

Vasquez N, Suau A, Magne F et al (2009) Differential effects of Bifidobacterium pseudolongum strain Patronus and metronidazole in the rat gut. Appl. Environ. Microbi-ol. 75: 381–386.

Vazquez-Gutierrez P, de Wouters T, Werder J et al (2016) High iron-sequestrating Bifidobacteria inhibit en-teropathogen growth and adhesion to intestinal epithelial cells In Vitro. Front. Microbiol. 7: 1480.

Azizian K, Hasani A, Shahsavandi S et al (2018) Cam-pylobacter jejuni and Campylobacter coli in cecum con-tents of chickens of slaughter age: A microbiological sur-veillance. Tropical Biomedicine 35 (2): 423–433.

Epps SV, Harvey RB, Hume ME et al (2013) Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. International Journal of Environmental Re-search and Public Health 10(12): 6292-6304. https://doi:10.3390/ijerph10126292.

McDowell S, Menzies F, McBride S et al (2008) Cam-pylobacter spp. in conventional broiler flocks in Northern Ireland: epidemiology and risk factors. Preventive Veteri-nary Medicine 84 (3): 261-276. https://doi: 10.1016/j.prevetmed.2007.12.010.

Luangtongkum T, Morishita TY, Ison AJ et al (2006) Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campyl-obacter spp. in poultry. Applied and Environmental Mi-crobiology 72 (5): 3600-3607. https://doi:10.1128/AEM.72.5.3600–3607.2006.

Kittl S, Kuhnert P, Hächler H, Korczak B (2011) Com-parison of genotypes and antibiotic resistance of Campyl-obacter jejuni isolated from humans and slaughtered chickens in Switzerland. Journal of Applied Microbiolo-gy 110 (2): 513-520. https://doi: 10.1111/j.1365-2672.2010.04906.

Medvecky M, Cejkova D, Polansky O et al (2018) Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken cecum in pure cultures. BMC Genomics 19 (1): 561.

Dewhirst FE, Paster BJ, Tzellas N et al (2001) Character-ization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lac-tobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol. 51 (5): 1797–804.

Goker M, Held B, Lucas S et al (2010) Complete genome sequence of Olsenella uli type strain (VPI D76D-27C). Stand Genomic Sci. 3 (1): 76–84.

Ferrario C, Alessandri G, Mancabelli L et al (2017) Un-tangling the cecal microbiota of feral chickens by cul-turomic and metagenomic analyses. Environ Microbiol. 19 (11): 4771–83.

Wongkuna S, Ghimire S, Janvilisri T (2020) Taxono-genomics description of Olsenella lakotia SW165T sp. nov., a new anaerobic bacterium isolated from cecum of feral chicken. F1000Research 9:1103 https://doi.org/10.12688/f1000research.25823.1.

Zhang Y, Simon SE, Johnson JA et al (2017) Spatial Microbial Composition Along the Gastrointestinal Tract of Captive Attwater's Prairie Chicken. Microbial Ecology 73:966–977. https://doi:10.1007/s00248-016-0870-1.

Kita K, Ken IR, Akamine C et al (2014) Influence of propolis residue on the bacterial flora in the cecum of Nanbu Kashiwa. Journal Poultry Science 51: 275–280. https://doi:10.2141/jpsa.0130137.

Dewhirst FE, Paster BJ, Tzellas N et al (2001) Character-ization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of olsenella gen. nov., reclassification of Lac-tobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51:1797–1804. https://doi:10.1099/00207713-51-5-1797.

Downloads

Published

2023-06-06

Issue

Section

Articles