Morphological and Genetic Analysis of Momordica cochinchinensis (Lour.) Spreng. (Gac) from Different Accessions in Malaysia
Morphological and Genetic Analysis of Momordica cochinchinensis (Lour.) Spreng. (Gac)
DOI:
https://doi.org/10.11594/jtls.13.02.10Keywords:
Gac fruit, Genetic analysis, Inter-simpler Sequence Repeat (ISSR), Morphology, Phylogenetic treeAbstract
Momordica cochinchinensis or gac fruit is a 'superfruit' that is well-known in Vietnam. Gac is an orange fruit that is ovoid in shape and has a soft spiny texture. In Malaysia, gac fruit is a new and less known plant. This study aimed to characterize gac fruit using morphological analysis involving both vegetative and reproductive parts and to characterize the genetic diversity in gac fruit by using Inter-simple sequence repeat (ISSR) analysis. Four different gac accessions were collected from different areas (Kota Damansara (Selangor), Melaka Tengah (Melaka), Hulu Langat (Selangor) and Kuantan (Pahang)) were cultivated under tropical conditions in Kuantan, Pahang. The gac accessions showed differences in morphological characters. Generally, the gac fruits were reddish-orange in colour, the leaf was dark green on the adaxial part and light green on the abaxial part, and the female and male flower was light yellow and white in color. The fruit weight ranged from 193.72 g (GD) to 334.70 g (GH) with varied shapes and spike density. DNA extraction was following the CTAB method. All 30 primers showed high levels of polymorphism (83%) and the polymorphism information content (PIC) with the mean of 0.48. Nei's genetic distance coefficient ranged between 0.27 and 0.6 with the mean value of 0.41. Dendrogram based on UPGMA analysis grouped the four gac accessions into two main groups. Cluster I consisted of accession GD, GM and GH while cluster II consisted of only GX. Results from both morphological and molecular analysis showed genetic diversities in all four gac fruits studied.
References
Phan-Thi H, Waché Y (2014) Isomerization and in-crease in the antioxidant properties of lycopene from Momordica cochinchinensis (Gac) by moderate heat treatment with UV–Vis spectra as a marker. Food Chemistry 156: 58-63. doi: 10.1016/j.foodchem.2014.01.040.
Jia S, Shen M, Zhang F, Xie J (2017) Recent advances in Momordica charantia: functional components and biological activities. International Journal of Molecu-lar Sciences 18(12): 2555. doi: 10.3390/ijms18122555.
Aamir M, Jittanit W (2017) Ohmic heating treatment for Gac aril oil extraction: Effects on extraction effi-ciency, physical properties and some bioactive com-pounds. Innovative Food Science & Emerging Tech-nologies 41: 224-234. doi: 10.1016/j.ifset.2017.03.013.
Kha TC, Nguyen MH, Roach PD, Parks SE, Stathopou-los C (2013) Gac fruit: nutrient and phytochemical composition and options for processing. Food Re-views International 29(1): 92-106. doi: 10.1080/87559129.2012.692141.
Kubola J, Siriamornpun S (2011) Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai Gac (Momordica cochinchinensis Spreng). Food Chemistry 127(3): 1138-1145. doi: 10.1016/j.foodchem.2011.01.115.
Kubola J, Siriamornpun S (2011) Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai Gac (Momordica cochinchinensis Spreng). Food Chemistry 127(3): 1138-1145. doi: 10.1016/j.foodchem.2011.01.115.
Petchsak P, Sripanidkulchai B, (2015) Momordica cochinchinensis aril extract induced apoptosis in human MCF-7 breast cancer cells. Asian Pacific Journal of Cancer Prevention 16(13): 5507-13. doi: 10.7314/apjcp.2015.16.13.5507.
Tropical Fruit Farm (n.d.) Gac fruit. https://tropicalfruitfarm.com.my/fruits/f-j,g/gac-fruit/. Accessed date: January 2022.
Wimalasiri D (2015) Genetic diversity, nutritional and biological activity of Momordica cochinchinensis (Cucurbitaceae). (Doctoral dissertation, RMIT Uni-versity, Australia). https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Genetic-diversity-nutritional-and-biological-activity-of-Momordica-cochinchinensis-Cucurbitaceae/9921863787101341. Retrieved date: August 2021.
Bharathi LK, Parida SK, Munshi AD, Behera TK, Ra-man KV, Mohapatra T (2012) Molecular diversity and phenetic relationship of Momordica spp. of In-dian occurrence. Genetic Resources and Crop Evolu-tion 59(5): 937-948. doi: 10.1007/s10722-011-9735-0.
Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify or-chard grass (Dactylis glomerata L.) germplasm varia-tions. PloS One 11(4), e0152972. doi: 10.1371/journal.pone.0152972.
Abdulqader, A., Ali, F., Ismail, A., & Esa, N. M. (2019) Antioxidant compounds and capacities of Gac (Momordica cochinchinensis Spreng) fruits. Asian Pacific Journal of Tropical Biomedicine, 9(4), 158. doi: 10.4103/2221-1691.256729.
Aboul-Maaty NAF, Oraby HAS (2019) Extraction of high-quality genomic DNA from different plant or-ders applying a modified CTAB-based method. Bul-letin of the National Research Centre 43(1): 25. doi: 10.1186/s42269-019-0066-1.
Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, Version 2.1. Exeter software. Setauket, New York.
Nei M, (1972) Genetic distance between popula-tions. The American Naturalist 106 (949): 283–292. http://www.jstor.org/stable/2459777. Accessed date: November 2021.
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular breeding 2(3): 225-238.doi: 10.1007/BF00564200.
Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics 95(1-2): 163-173. doi: 10.1007/s001220050544.
Lübberstedt T, Melchinger AE, Dußle C, Vuylsteke M, Kuiper M (2000) Relationships among early Eu-ropean maize inbreds: IV. genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Science 40(3): 783-791.doi: 10.2135/cropsci2000.403783x.
Gaikwad AB, Behera TK, Singh AK, Chandel D, Kari-haloo JL, Staub JE (2008) Amplified fragment length polymorphism analysis provides strategies for im-provement of bitter gourd (Momordica charantia L.). American Society of Horticultural Science,43(1): 127-133. doi: 10.21273/HORTSCI.43.1.127.
Nakano M (2020). Red seal landscape horticulturist identify plants and plant requirements. Victoria, B.C.: BCcampus. https://opentextbc.ca/plantidentification/. Accessed date: December 2022.
Bharathi LK, John KJ (2013) Momordica Genus in Asia-An Overview. 1st Edition. New Delhi: Springer.
Wimalasiri D, Piva T, Urban S, Huynh T (2016) Morphological and genetic diversity of Momordica cochinchinensis (Cucurbitaceae) in Vietnam and Thailand. Genetic Resources and Crop Evolution 63(1): 19-33. doi: 10.1007/s10722-015-0232-8.
Vuong LT (2000) Underutilized β-carotene–rich crops of Vietnam. Food and Nutrition Bulletin, 21(2), 173-181. doi: 10.1177/156482650002100211.
Toan PD, Van Biet H, Hue VTT, Dang Sang H, Tri BM, Tuyen BC (2018) Analysis of genetic diversity of gac ['Momordica cochinchinensis'(Lour.) Spreng] in Southern Vietnam using fruit-morphological and mi-crosatellite markers. Australian Journal of Crop Sci-ence 12(12): 1890. doi: 10.21475/ajcs.18.12.12.p1170.
Tran XT, Parks SE, Roach PD, Nguyen MH (2020) Improved propagation methods for gac (Momordica cochinchinensis Spreng.). Experimental Agriculture 56(1): 132-141. doi:https://doi.org/10.1017/S001447971900022X.
Loveless MD, Hamrick JL (1984) Ecological determi-nants of genetic structure in plant populations. An-nual Review of Ecology and Systematics 15(1): 65-95. doi: 10.1146/annurev.es.15.110184.000433.
Xia T, Chen S, Chen S, Zhang D, Zhang D, Gao Q, Ge X (2007) ISSR analysis of genetic diversity of the Qinghai-Tibet Plateau endemic Rhodiola chrysan-themifolia (Crassulaceae). Biochemical systematics and Ecology 35(4): 209-214. doi: 10.1016/j.bse.2006.09.
Gallucci MARCELLO, Perugini M (2007) The Marker Index: A new method of selection of marker varia-bles in factor analysis. TPM-Testing, Psychometrics, Methodology in Applied Psychology 14(1): 3-25.
Etminan A, Pour-Aboughadareh A, Noori A, Ah-madi-Rad A, Shooshtari L, Mahdavian Z, Yousefiazar-Khanian M (2018) Genetic relationships and diversi-ty among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnology & Biotechnological Equipment 32(3): 610-617. doi: 10.1080/13102818.2018.1447397.
Chaudhary V, Kumar M, Sharma S, Kumar N, Kumar V, Yadav HK, Sirohi U (2018) Assessment of genetic diversity and population structure in gladiolus (Gladiolus hybridus Hort.) by ISSR markers. Physiol-ogy and Molecular Biology of Plants 24(3): 493-501. doi: 10.1007/s12298-018-0519-2.
Pourhosseini SH, Hadian J, Sonboli A, Nejad Ebrahi-mi S, Mirjalili MH (2018) Genetic and chemical di-versity in Perovskia abrotanoides Kar. (Lamiaceae) populations based on ISSRs markers and essential oils profile. Chemistry & Biodiversity 15(3): e1700508. doi: 10.1002/cbdv.201700508.
Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M, Halidu J (2021) DNA fingerprinting, fixation-index (Fst) and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system. Scientific Re-ports 11(1): 1-23. doi: 10.1038/s41598-021-93867-5.
Tantasawat P, Trongchuen J, Prajongjai T, Seehalak W, Jittayasothorn Y (2010) Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analy-sis. Scientia Horticulturae 124(2): 204-216. doi: 10.1016/j.scienta.2009.12.033.
Souframanien, J. & Gopalakrishna, T. (2004). A comparative analysis of genetic diversity in black-gram genotypes using RAPD and ISSR markers. The-oretical and Applied Genetics 109(8): 1687-1693. doi: 10.1007/s00122-004-1797-3.
Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Reports 27(3): 519-528. doi: 10.1007/s00299-007-0478-5.
Khajudparn P, Prajongjai T, Poolsawat O, Tanta-sawat PA (2012) Application of ISSR markers for verification of F1 hybrids in mungbean (Vigna radi-ata). Genetics and Molecular Research 11(3): 3329-3338. doi: 10.4238/2012.September.17.3.
Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J (2004) Genetic diversity and relationships in mulberry (genus Morus) as re-vealed by RAPD and ISSR marker assays. BMC Ge-netics 5(1): 1-9. doi: 10.1186/1471-2156-5-1.
Du X, Sun Y, Li X, Zhou J, Li X (2011) Genetic diver-gence among inbred lines in Cucurbita moschata from China. Scientia Horticulturae 127(3): 207-213. doi: 10.1016/j.scienta.2010.10.018.
Vargas‐Ponce, O., Zizumbo‐Villarreal, D., Martínez‐Castillo, J., Coello‐Coello, J. & Colunga‐García Marín, P. (2009). Diversity and structure of landraces of gave grown for spirits under traditional agriculture: a comparison with wild populations of A. angustifolia (Agavaceae) and commercial plantations of A. tequi-lana. American Journal of Botany 96(2): 448-457. doi: 10.3732/ajb.0800176.
Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. In population genetics of forest trees. Forestry Sciences. Dordrecht, Springer.
Schaefer H, Renner SS (2008) A phylogeny of the oil bee tribe Ctenoplectrini (Hymenoptera: Anthophila) based on mitochondrial and nuclear data: evidence for Early Eocene divergence and repeated out-of-Africa dispersal. Molecular Phylogenetics and Evolu-tion 47(2): 799-811. doi: 10.1016/j.ympev.2008.01.030.
Torres E, Iriondo JM, Pérez C (2002) Vulnerability and determinants of reproductive success in the narrow endemic Antirrhinum microphyllum (Scroph-ulariaceae). American Journal of Botany 89(7): 1171-1179. http://www.jstor.org/stable/4122203. Accessed date: December 2021.
Stankiewicz M, Gadamski G, Gawronski SW (2001) Genetic variation and phylogenetic relationships of triazine‐resistant and triazine‐susceptible biotypes of Solanum nigrum–analysis using RAPD markers. Weed Research 41(4): 287-300. doi: 10.1046/j.1365-3180.2001.00238.x.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Tropical Life Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License