A Review on the Cytotoxic and Antimicrobial Properties of Xanthones from Cratoxylum cochinchinense
Bioactivities of Cratoxylum cochinchinense
DOI:
https://doi.org/10.11594/jtls.13.01.20Keywords:
Antimicrobial, Antioxidant, Asian plant, Antimalaria, Cratoxylum cochinchinense, CytotoxicityAbstract
Cratoxylum cochinchinense is a perennial plant found in Southeast Asia, having diverse terminologies in various Southeast Asian countries. It has been traditionally used as medicine, tea and food spice. Phytochemical analysis reveals a rich array of bioactive compounds in different parts of the plant such as xanthones, caged xanthones, flavonoids, tocotrienols, triterpenoids, benzophenones and anthraquinones, which obviously possess beneficial biological properties. Among these, xanthones are the most abundant secondary metabolites in C. cochinchinense. This review presents the cytotoxic properties of xanthones present in C. cochinchinense as well as their antimalarial and antibacterial properties, further supporting the medicinal use of this plant.
References
Huang J, Wang Y, Xu S et al. (2019) The complete chloroplast genome of Cratoxylum cochinchinense (Hypericaceae). Mitochondrial DNA Part B: Resources 4 (2): 3452–3453. doi: 10.1080/23802359.2019.1674216.
Rosli SNB, Haizam SB (2020) Malaysia Biodiversity Information System (MyBIS) [Internet]. https://www.mybis.gov.my/art/306. Accessed date: March 2022.
Mustaqim WA, Amboupe DS (2020) Cratoxylum cochinchinense (Hypericaceae): A new record for Sulawesi, Indonesia. Philippine Journal of Science 149 (3): 675–678.
MyBIS MBIS (2015) Native Plants Cratoxylum cochinchinense Malaysia: Malaysia Biodiversity Information System (MyBIS). https://www.mybis.gov.my/sp/6214. Accessed date: March 2022.
Laphookhieo S, Syers JK, Kiattansakul R, Chantrapromma K (2006) Cytotoxic and Antimalarial Prenylated Xanthones from Cratoxylum cochinchinense. Chem Pharm Bull 54 (5): 745–747. doi: 10.1248/cpb.54.745.
Sosef MSM (2016) Cratoxylum cochinchinense (PROSEA). https://uses.plantnet-project.org/en/Cratoxylum_cochinchinense_(PROSEA). Accessed Date: February 2022.
Singapore NPB (2019) Cratoxylum cochinchinense (Lour.) Blume. http://www.nparks.gov.sg/florafaunaweb/flora/2/8/2829. Accessed Date: April 2022.
Nguyen HD, Trinh BTD, Nguyen NK et al. (2011) Xanthones from the twigs of Cratoxylum cochinchinense. Phytochemistry Letters 4 (1): 48–51. doi: 10.1016/j.phytol.2010.11.006.
Mahabusarakam W, Nuangnaowarat W, Taylor WC (2006) Xanthone derivatives from Cratoxylum cochinchinense roots. Phytochemistry 67 (5): 470–474. doi: 10.1016/j.phytochem.2005.10.008.
Innajak S, Nilwarangoon S, Mahabusarakam W, Watanapokasin R (2016) Anti-proliferation and apoptosis induction in breast cancer cells by Cratoxylum cochinchinense extract. Journal of Medical Association of Thailand 99 Suppl 8: S84-s9. PMID: 29901920.
Jia C, Gong C, Chen H et al. (2019) A pair of new enantiomers of xanthones from the stems and leaves of Cratoxylum cochinchinense. Chinese Medicine (United Kingdom) 14 (1): 1–6. doi: 10.1186/s13020-019-0235-z.
College JNM (2001) Dictionary of Chinese Herb Medicines. Shanghai: Shanghai Scientific and Technologic Press.
Mingsheng L (2003) Conservation and utilization of tropical medicine resources of Hainan Island. Molecular Plant Breeding 2003 1 (5/6):791-794.
Laphookhieo S, Maneerat W, Buatip T, Syers JK (2008) New xanthones from Cratoxylum cochinchinense. Canadian Journal of Chemistry 86 (8): 757–760. doi: 10.1139/V08-076.
Burkill IH (1935) A dictionary of the economic products of the Malay Peninsula. Volume II (IZ). London: Crown Agents for the Colonies.
Wray L (1893) Teeth blacking amongst the Malays. Perak Museum Notes 1(2):35-39.
Li ZP, Lee HH, Uddin Z et al. (2018) Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense. Bioorganic Chemistry 78 39–45. doi: 10.1016/j.bioorg.2018.02.026.
Natrsanga P, Jongaramruong J, Rassamee K et al. (2020) Two new xanthones from the roots of Cratoxylum cochinchinense and their cytotoxicity. Journal of Natural Medicines 74 (2): 467–473. doi: 10.1007/s11418-019-01376-7.
Laphookhieo S, Maneerat W, Koysomboon S (2009) Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense. Molecules 14 (4): 1389–1395. doi: 10.3390/molecules14041389.
Duan YH, Dai Y, Wang GH et al. (2015) Bioactive prenylated xanthones from the stems of Cratoxylum cochinchinense. Journal of Asian Natural Products Research 17 (5): 519–531. doi: 10.1080/10286020.2015.1043902.
Nguyen LHD, Harrison LJ (1998) Triterpenoid and xanthone constituents of Cratoxylum cochinchinense. Phytochemistry 50 (3): 471–476. doi: 10.1016/S0031-9422(98)00467-1.
Phuwapraisirisan P, Udomchotphruet S, Surapinit S, Tip-Pyang S (2006) Antioxidant xanthones from Cratoxylum cochinchinense. Natural Product Research 20 (14): 1332–1337. doi: 10.1080/14786410601102033.
Udomchotphruet S, Phuwapraisirisan P, Sichaem J, Tip-Pyang S (2012) Xanthones from the stems of Cratoxylum cochinchinense. Phytochemistry 73 148–151. doi: 10.1016/j.phytochem.2010.04.028.
Mahabusarakam W, Rattanaburi S, Phongpaichit S, Kanjana-Opas A (2008) Antibacterial and cytotoxic xanthones from Cratoxylum cochinchinense. Phytochemistry Letters 1 (4): 211–214. doi: 10.1016/j.phytol.2008.09.012.
Magadula JJ (2010) A bioactive isoprenylated xanthone and other constituents of Garcinia edulis. Fitoterapia 81 (5): 420–423. doi: 10.1016/j.fitote.2009.12.002.
Chailap B, Nuanyai T, Puthong S, Buakeaw A (2017) Chemical constituents of fruits and leaves of Cratoxylum cochinchinense and their cytotoxic activities. Naresuan University Journal: Science and Technology 25 (3): 22–30.
John OD, Brown L, Panchal SK (2018) Garcinia Fruits: Their Potential to Combat Metabolic Syndrome. In: Ullah MF, Ahmad A, eds. Nutraceuticals and Natural Products Derivatives. John Wiley & Sons, Inc. 39-80. doi: 10.1002/9781119436713.ch3.
Shan T, Ma Q, Guo K et al. (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Current Molecular Medicine 11 (8): 666–677. doi: 10.2174/156652411797536679.
Blanco-Ayala T, Lugo-Huitrón R, Serrano-López EM et al. (2013) Antioxidant properties of xanthones from Calophyllum brasiliense: Prevention of oxidative damage induced by FeSO4. BMC Complement Altern Med. doi: 10.1186/1472-6882-13-262.
Zamakshshari NH, Ee GCL, Ismail IS et al. (2019) Cytotoxic xanthones isolated from Calophyllum depressinervosum and Calophyllum buxifolium with antioxidant and cytotoxic activities. Food and Chemical Toxicology 133 (May): 110800. doi: 10.1016/j.fct.2019.110800.
Masters KS, Bräse S (2012) Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chemical Reviews 112 (7): 3717–3776. doi: 10.1021/cr100446h.
Peres V, Nagem TJ, de Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55 (7): 683–710. doi: 10.1016/s0031-9422(00)00303-4.
Pinto MMM, Palmeira A, Fernandes C et al. (2021) From natural products to new synthetic small molecules: A journey through the world of xanthones. Molecules 26 (2): 431. doi: 10.3390/molecules26020431.
Huang Q, Wang Y, Wu H et al. (2021) Xanthone glucosides: Isolation, bioactivity and synthesis. Molecules 26 (18): 5575. doi: 10.3390/molecules26185575.
Kurniawan YS, Priyangga KTA, Jumina et al. (2021) An update on the anticancer activity of xanthone derivatives: A review. Pharmaceuticals 14 (11): 1144. doi: 10.3390/ph14111144.
Khattab AR, Farag MA (2020) Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. Critical Reviews in Biotechnology 40 (3): 415–431. doi: 10.1080/07388551.2020.1721426.
El-Seedi H, El-Ghorab D, El-Barbary M et al. (2009) Naturally occurring xanthones; Latest investigations: Isolation, structure elucidation and chemosystematic significance. Current Medicinal Chemistry 16 (20): 2581–2626. doi: 10.2174/092986709788682056.
Bennett GJ, Lee HH (1989) Xanthones from guttiferae. Phytochemistry 28 (4): 967–998. doi: 10.1016/0031-9422(89)80170-0.
El-Seedi H, El-Barbary M, El-Ghorab D et al. (2010) Recent insights into the biosynthesis and biological activities of natural xanthones. Current Medicinal Chemistry 17 (9): 854–901. doi: 10.2174/092986710790712147.
Beerhues L, Barillas W, Peters S, Schmidt W (1999) Biosynthesis of plant xanthones. In: Diederichsen U, Lindhorst TK, Westermann B, Wessjohann L, eds. Bioorganic chemistry Highlights and New Aspects. Weinheim, Germany, Wiley-VCH. 322-328.
Barillas W, Beerhues L (2000) 3-Hydroxybenzoate: coenzyme A ligase from cell cultures of Centaurium erythraea: Isolation and characterization. Biological Chemistry 381 (2): 155–160. doi: 10.1515/BC.2000.021.
Fernandes C, Carraro ML, Ribeiro J et al. (2019) Synthetic chiral derivatives of xanthones: Biological activities and enantioselectivity studies. Molecules 24 (4): 1–36. doi: 10.3390/molecules24040791.
Resende DISP, Durães F, Maia M et al. (2020) Recent advances in the synthesis of xanthones and azaxanthones. Organic Chemistry Frontiers 7 (19): 3027–3066. doi: 10.1039/d0qo00659a.
Thu ZM, Aung HT, Sein MM et al. (2017) Highly cytotoxic xanthones from Cratoxylum cochinchinense collected in Myanmar. Natural Product Communications 12 (11): 1759–1762. doi: 10.1177/1934578x1701201127.
Raksat A, Sripisut T, Maneerat W (2015) Bioactive xanthones from Cratoxylum cochinchinense. Natural Product Communications 10 (11): 1969–1972. doi: 10.1177/1934578x1501001141.
Rattanaburi S, Daus M, Watanapokasin R, Mahabusarakam W (2014) A new bisanthraquinone and cytotoxic xanthones from Cratoxylum cochinchinense. Natural Product Research 28 (9): 606–610. doi: 10.1080/14786419.2014.886212.
Boonnak N, Karalai C, Chantrapromma S et al. (2009) Anti-Pseudomonas aeruginosa xanthones from the resin and green fruits of Cratoxylum cochinchinense. Tetrahedron 65 (15): 3003–3013. doi: 10.1016/j.tet.2009.01.083.
Ito C, Matsui T, Niimi A et al. (2017) Four new xanthones from Cratoxylum cochinchinense and their in vitro antiproliferative effects. Planta Medica 83 (9): 812–818. doi: 10.1055/s-0043-102510.
Desjardins RE, Canfield CJ, Haynes JD, Chulay JD (1979) Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy 16 (6): 710–718. doi: 10.1128/AAC.16.6.710.
Hay AE, Hélesbeux JJ, Duval O et al. (2004) Antimalarial xanthones from Calophyllum caledonicum and Garcinia vieillardii. Life Sciences 75 (25): 3077–3085. doi: 10.1016/j.lfs.2004.07.009.
Sakagami Y, Iinuma M, Piyasena KGNP, Dharmaratne HRW (2005) Antibacterial activity of α-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 12 (3): 203–208. doi: 10.1016/j.phymed.2003.09.012.
Suksamrarn S, Suwannapoch N, Phakhodee W et al. (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chemical and Pharmaceutical Bulletin 51 (7): 857–859. doi: 10.1248/cpb.51.857.
Suksamrarn S, Suwannapoch N, Ratananukul P et al. (2002) Xanthones from the green fruit hulls of Garcinia mangostana. Journal of Natural Products 65 (5): 761–763. doi: 10.1021/np010566g.
Meesakul P, Pansanit A, Maneerat W et al. (2016) Xanthones from Garcinia propinqua roots. Natural Product Communications 11 (1): 87–90. doi: 10.1177/1934578x1601100126.
Salman Z, Yu-Qing J, Bin L et al. (2019) Antioxidant nature adds further therapeutic value: An updated review on natural xanthones and their glycosides. Digital Chinese Medicine 2 (3): 166–192. doi: 10.1016/j.dcmed.2019.12.005.
Umoh UF, Thomas PS, Essien EE et al. (2021) Isolation and characterization of bioactive xanthones from Hippocratea africana (Willd.) Loes.ex Engl. (Celastraceae). Journal of Ethnopharmacology 280 114031. doi: 10.1016/j.jep.2021.114031.
Jo YH, Kim SB, Liu Q et al. (2017) Prenylated xanthones from the roots of Cudrania tricuspidata as inhibitors of lipopolysaccharide-stimulated nitric oxide production. Archiv der Pharmazie 350 (1): 1–7. doi: 10.1002/ardp.201600263.
Ren Y, Matthew S, Lantvit DD et al. (2011) Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues. Journal of Natural Products 74 (5): 1117–1125. doi: 10.1021/np200051j.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Tropical Life Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License