Genomic Analysis for Haloacid Dehalogenase in Bacillus megaterium WSH-002
DOI:
https://doi.org/10.11594/jtls.12.01.07Keywords:
Genomics, haloacid dehalogenase, Bacillus megaterium WSH-002Abstract
Bacterial dehalogenation is one of the processes that can reduce the environmental pollutions. The attributes of Bacillus megaterium sp. that able to grow in polluted environment suggested that, its genome contains pollutant degrading genes. To date, there were no reports related to dehalogenase in Bacillus megaterium WSH-002 and how it was regulated. Therefore, the presence of environmentally important genes that can detoxify organohalogens in many microbial genomes including Bacillus megaterium WSH-002 will be investigated. The results from genome annotations of Bacillus megaterium WSH-002 has shown its potential for bioremediation due to the putative haloacid dehalogenase proteins. Only one type of haloacid dehalogenase was identified. It was classified as haloacid dehalogenase type II because of its amino acid sequence are highly identical with HAD_type_II and HAD_L2-DEX. The study concluded that, the genome of Bacillus megaterium WSH-002 contains haloacid dehalogenase genes that is useful for biodegradation of halogenated compound. In future, further investigation on the expression of the dehalogenase gene as recombinant protein and bioinformatic analysis to study dehalogenase protein structure and functions will be considered.Â
References
References
Gribble, G.W., (2003), The diversity of naturally produced organohalogens, Chemosphere, 52 (2): 289-297. doi:10.1016/S0045-6535(03)00207-8
Plewa, M.J., et al., (2010), Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection byâ€products, Environmental and molecular mutagenesis, 51 (8â€9): 871-878. doi:10.1002/em.20585
Awang, R., et al., (2011), Case study: Malaysian information service on pesticide toxicity, Encyclopaedia of occupational health and safety. Geneva, Switzerland: International Labour Organization, 22
Gribble, G.W., (2015), A recent survey of naturally occurring organohalogen compounds, Environmental Chemistry, 12 (4): 396-405. doi:10.1071/EN15002
Oyewusi, H.A., R.A. Wahab, and F. Huyop, (2020), Dehalogenase-producing halophiles and their potential role in bioremediation, Marine Pollution Bulletin, 160: 111603. doi:10.1016/j.marpolbul.2020.111603
Zakary, S., H.A. Oyewusi, and F. Huyop, (2020), Dehalogenases for pollutant degradation: A mini review, Science, 11 (1): 17-24. doi:10.11594/jtls.11.01.03
Leach, L.H., et al., (2009), Detection and enumeration of haloacetic acidâ€degrading bacteria in drinking water distribution systems using dehalogenase genes, Journal of applied microbiology, 107 (3): 978-988. doi:10.1111/j.1365-2672.2009.04277.x
Slater, J.H., A.T. Bull, and D.J. Hardman, (1996), Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes, Advances in microbial physiology, 38: 133-176. doi:10.1016/S0065-2911(08)60157-5
Adamu, A., et al., (2020), Haloacid dehalogenases of Rhizobium sp. and related enzymes: Catalytic properties and mechanistic analysis, Process Biochemistry, 92: 437-446. doi:10.1016/j.procbio.2020.02.002
Kerr, L.M. and J.R. Marchesi, (2006), Isolation of novel bacteria able to degrade α-halocarboxylic acids by enrichment from environmental samples, chemosphere, 64 (5): 848-855. doi:10.1016/j.chemosphere.2005.10.042
Kwok, S.Y., et al., (2007), Proteomic analysis of Burkholderia cepacia MBA4 in the degradation of monochloroacetate, Proteomics, 7 (7): 1107-1116. doi:10.1002/pmic.200600660
Vary, P.S., et al., (2007), Bacillus megaterium—from simple soil bacterium to industrial protein production host, Applied microbiology and biotechnology, 76 (5): 957-967. doi:10.1007/s00253-007-1089-3
Akhtar, P., et al., (2009), The tubulin-like RepX protein encoded by the pXO1 plasmid forms polymers in vivo in Bacillus anthracis, Journal of bacteriology, 191 (8): 2493-2500. doi:10.1128/JB.00027-09
Lioy, V.S., et al., (2010), A toxin–antitoxin module as a target for antimicrobial development, Plasmid, 63 (1): 31-39. doi:10.1016/j.plasmid.2009.09.005
Al-Gheethi, A.A.S., (2015), Recycling of sewage sludge as production medium for cellulase by a Bacillus megaterium strain, International Journal of Recycling of Organic Waste in Agriculture, 4 (2): 105-119. doi:10.1007/s40093-015-0090-6
Luo, L., et al., (2016), Isolation, identification, and optimization of culture conditions of a bioflocculant-producing bacterium Bacillus megaterium SP1 and its application in aquaculture wastewater treatment, BioMed research international, 2016 doi:10.1155/2016/2758168
Dobrzanski, T., et al., (2018), Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione, PloS one, 13 (4): e0196166. doi:10.1371/journal.pone.0196166
Akcay, K. and Y. Kaya, (2019), Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds, Biotechnology & Biotechnological Equipment, 33 (1): 945-953. doi:10.1080/13102818.2019.1631717
Wahhab, B.H.A., et al., (2020), Identification and characterization of a 2, 2-dichloropropionic acid (2, 2-DCP) degrading alkalotorelant bacterium strain BHS1 isolated from Blue Lake, Turkey, Journal of Tropical Life Science, 10 (3): 245-252. doi:10.11594/jtls.10.03.08
Gordon, S., (2002), Genomics and World Health. Report of the Advisory Committee on Health Research. Geneva: World Health Organization, 2002. x + 248pp. Price Sw.fr.35/US$31.50 (in developing countries Sw.fr.14). ISBN 92-4-154554-2, Transactions of The Royal Society of Tropical Medicine and Hygiene, 96 (6): 669-669. doi:10.1016/s0035-9203(02)90347-0
Wasmund, K., et al., (2021), Genomic insights into diverse bacterial taxa that degrade extracellular DNA in marine sediments, Nature Microbiology: 1-14. doi:10.1038/s41564-021-00917-9
White, O., et al., (1999), Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1, Science, 286 (5444): 1571-1577. doi:10.1126/science.286.5444.1571
Kunst, F., et al., (1997), The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, 390 (6657): 249-256. doi:10.1038/36786
Goodner, B.W., et al., (1999), Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens, Journal of bacteriology, 181 (17): 5160-5166. doi:10.1128/JB.181.17.5160-5166.1999
Medema, M.H., T. de Rond, and B.S. Moore, (2021), Mining genomes to illuminate the specialized chemistry of life, Nature Reviews Genetics: 1-19. doi:10.1038/s41576-021-00363-7
Chandran, H., M. Meena, and K. Sharma, (2020), Microbial biodiversity and bioremediation assessment through omics approaches, Frontiers in Environmental Chemistry, 1: 9. doi:10.3389/fenvc.2020.570326
Singh, A.K., et al., (2021), Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook, Science of The Total Environment: 144561. doi:10.1016/j.scitotenv.2020.144561
Huyop, F. and R.A. Cooper, (2011), Regulation of dehalogenase E (DehE) and expression of dehalogenase regulator gene (DehR) from Rhizobium sp. RC1 in E. coli, Biotechnology & Biotechnological Equipment, 25 (1): 2237-2242. doi:10.5504/BBEQ.2011.0009
Chan, W.Y., et al., (2010), Sequenceâ€and activityâ€based screening of microbial genomes for novel dehalogenases, Microbial biotechnology, 3 (1): 107-120. doi:10.1111/j.1751-7915.2009.00155.x
Oyewusi, H.A., R.A. Wahab, and F. Huyop, (2021), Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria, Molecular Biology Reports: 1-15. doi:10.1007/s11033-021-06239-7
Wahhab, B.H.A., et al., (2021), Genomic analysis of a functional haloacid-degrading gene of Bacillus megaterium strain BHS1 isolated from Blue Lake (Mavi Gölü, Turkey), Annals of Microbiology, 71 (1): 1-11. doi:10.1186/s13213-021-01625-9
Liu, L., et al., (2011), Complete genome sequence of the industrial strain Bacillus megaterium WSH-002: 6389-6390.10.1128/JB.06066-11
Overbeek, R., et al., (2014), The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), Nucleic acids research, 42 (D1): D206-D214. doi:10.1093/nar/gkt1226
Altschul, S.F., et al., (1997), Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic acids research, 25 (17): 3389-3402. doi:10.1093/nar/25.17.3389
Pundir, S., M.J. Martin, and C. O’Donovan, UniProt protein knowledgebase, in Protein Bioinformatics. 2017, Springer. p. 41-55.
Mitchell, A., et al., (2015), The InterPro protein families database: the classification resource after 15 years, Nucleic acids research, 43 (D1): D213-D221. doi:10.1093/nar/gku1243
Eppinger, M., et al., (2011), Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319, Journal of bacteriology, 193 (16): 4199-4213. doi:10.1128/JB.00449-11
Aravind, L. and E.V. Koonin, (1998), The HD domain defines a new superfamily of metal-dependent phosphohydrolases, Trends in biochemical sciences, 23 (12): 469-472. doi:10.1016/S0968-0004(98)01293-6
Zimmerman, M.D., et al., (2011), Structural Insight into the Mechanism of Substrate Specificity and Catalytic Activity of an HD-Domain Phosphohydrolase: The 5;# 8242;-Deoxyribonucleotidase YfbR from Escherichia coli, J. Mol. Biol., 378 (1); 04, 2008) doi:10.1016/j.jmb.2008.02.036
Zimmermann, H., M. Zebisch, and N. Sträter, (2012), Cellular function and molecular structure of ecto-nucleotidases, Purinergic signalling, 8 (3): 437-502. doi:10.1007/s11302-012-9309-4
Kilstrup, M., et al., (2005), Nucleotide metabolism and its control in lactic acid bacteria, FEMS microbiology reviews, 29 (3): 555-590. doi:10.1016/j.fmrre.2005.04.006
Nemati, M., et al., (2013), Identification of putative Cof-like hydrolase associated with dehalogenase in Enterobacter cloacae MN1 isolated from the contaminated sea-side area of the Philippines, Malaysian Journal of Microbiology, 9 (3): 253-259.
Gillis, A., et al., (2018), Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis, FEMS microbiology reviews, 42 (6): 829-856. doi:10.1093/femsre/fuy034
Sudi, I.Y., et al., (2014), Insights into the stereospecificity of the d-specific dehalogenase from Rhizobium sp. RC1 toward d-and l-2-chloropropionate, Biotechnology & Biotechnological Equipment, 28 (4): 608-615. doi:10.1080/13102818.2014.937907
Sudi, I.Y., et al., (2014), Interactions of non-natural halogenated substrates with D-specific dehalogenase (DehD) mutants using in silico studies, Biotechnology & Biotechnological Equipment, 28 (5): 949-957. doi:10.1080/13102818.2014.960663
Seifried, A., J. Schultz, and A. Gohla, (2013), Human HAD phosphatases: structure, mechanism, and roles in health and disease, The FEBS journal, 280 (2): 549-571. doi:10.1111/j.1742-4658.2012.08633.x
Cornish-Bowden, A., (2014), Current IUBMB recommendations on enzyme nomenclature and kinetics, Perspectives in Science, 1 (1-6): 74-87. doi:10.1016/j.pisc.2014.02.006
Schomburg, I., A. Chang, and D. Schomburg, (2014), Standardization in enzymology—Data integration in the world׳ s enzyme information system BRENDA, Perspectives in Science, 1 (1-6): 15-23. doi:10.1016/j.pisc.2014.02.002
Wang, W., et al., (2001), Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 Ã… resolution, Structure, 9 (1): 65-71. doi:10.1016/S0969-2126(00)00558-X
Chiba, Y., et al., (2013), Structural units important for activity of a novel-type phosphoserine phosphatase from Hydrogenobacter thermophilus TK-6 revealed by crystal structure analysis, Journal of Biological Chemistry, 288 (16): 11448-11458. doi:10.1074/jbc.M112.449561
Marchler-Bauer, A., et al., (2017), CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic acids research, 45 (D1): D200-D203. doi:10.1093/nar/gkw1129
Janssen, D.B., J.E. Oppentocht, and G.J. Poelarends, (2001), Microbial dehalogenation, Current Opinion in Biotechnology, 12 (3): 254-258. doi:10.1016/S0958-1669(00)00208-1
Hill, K.E., J.R. Marchesi, and A.J. Weightman, (1999), Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families, Journal of bacteriology, 181 (8): 2535-2547. doi:10.1128/JB.181.8.2535-2547.1999
Van Der Ploeg, J., G. van Hall, and D.B. Janssen, (1991), Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene, Journal of bacteriology, 173 (24): 7925-7933. doi:10.1128/jb.173.24.7925-7933.1991
Tsang, J.S. and L. Sam, (1999), Cloning and characterization of a cryptic haloacid dehalogenase from Burkholderia cepacia MBA4, Journal of bacteriology, 181 (19): 6003-6009. doi:10.1128/JB.181.19.6003-6009.1999
Ridder, I.S., et al., (1997), Three-dimensional structure of L-2-haloacid dehalogenase from Xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate, Journal of Biological Chemistry, 272 (52): 33015-33022. doi:10.1074/jbc.272.52.33015
Hisano, T., et al., (1996), Crystal Structure of L-2-Haloacid Dehalogenase from Pseudomonas sp. YL: an α/β Hydrolase Structure that is Different from the α/β Hydrolase Fold, Journal of Biological Chemistry, 271 (34): 20322-20330. doi:10.1074/jbc.271.34.20322
Liu, J.-Q., et al., (1997), Paracatalytic inactivation of L-2-haloacid dehalogenase from Pseudomonas sp. YL by hydroxylamine: evidence for the formation of an ester intermediate, Journal of Biological Chemistry, 272 (6): 3363-3368. doi:10.1074/jbc.272.6.3363
Fetzner, S. and F. Lingens, (1994), Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications, Microbiological reviews, 58 (4): 641-685. doi:10.1128/mr.58.4.641-685.1994
Kurihara, T., et al., (1995), Comprehensive site-directed mutagenesis of L-2-halo acid dehalogenase to probe catalytic amino acid residues, The journal of biochemistry, 117 (6): 1317-1322. doi:10.1093/oxfordjournals.jbchem.a124861
Wang, G., et al., (2010), A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil, Journal of Bacteriology, 192 (11): 2737-2745. doi:10.1128/JB.01547-09
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Tropical Life Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License