Effect of Acute Toxicity of Commercial Organophosphate Insecticide Based on Chlorpyrifos on Fejervarya limnocharis Tadpoles (Anura: Dicroglossidae)

Acute Toxicity of Commercial Chloropyrifos on Fejervarya limnocharis Tadpole

Authors

  • Shima Ramadani Brawijaya University
  • Agung Pramana Warih Marhendra Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
  • Dewa Gede Raka Wiadnya Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
  • Nia Kurniawan Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia

DOI:

https://doi.org/10.11594/jtls.12.02.09

Keywords:

Acute, Chlorpyrifos, Dursban 200 EC, Fejervarya limnocharis, tadpoles

Abstract

Organophosphate pesticides, especially chlorpyrifos, are one of the most widely
used insecticides in agriculture, but their toxicity and potential sensitivity effects
on Anura, especially Fejervarya limnocharis are still unknown. The purpose of
this investigation is to study F. limnocharis (Anura: Dicroglossidae) tadpole sensitivity to lethal (survivability) and sublethal effects (morphological alterations and
swimming activity) of chlorpyrifos in Dursban 200EC commercial formula under
acute exposure. An acute toxicity test was carried out on ten tadpoles (Gosner
25) in each repetition. The sample was obtained from artificial reproduction by
injecting the Trial Batch 2000 IU hCG by Kings Lab. The acute toxicity testing
consisted of three replicates with a chlorpyrifos concentration of 0; 0.4; 0.8; 1;
2; 4; and 8 µg/L. Physico-chemical parameters, mortality, morphological, and
swimming alterations of each concentration were observed at 24th, 48th, 72nd, and
96th hours. The LC50 of chlorpyrifos for F. limnocharis tadpoles was 2.86 µg/L.
The percentage of survivability F. limnocharis tadpoles decreased after exposure
to chlorpyrifos above 1µg/L, while morphological alterations were observed in
2 µg/L and 4 µg/L after 48th hours exposure, and the swimming alterations have
occurred at 24th hours in 1; 2; 4 and 8 µg/L. Morphological alterations were observed including asymmetrical body shape, edema, and abnormal tail shape.
Based on the LC50 value, commercial chlorpyrifos has high-level toxicity on F.
limnocharis tadpoles.
Keywords: Acute, Chlorpyrifos, Dursban 200 EC, Fejervarya limnocharis, Tadpoles

References

Arribas R, Díaz-Paniagua C, Gomez-Mestre I (2014) Ecological consequences of amphibian larvae and their native and alien predators on the community structure of temporary ponds. Freshwater Biology 59 (9): 1996–2008. DOI: 10.1111/fwb.12402.

Touchon JC, Wojdak JM (2014) Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance. PLOS ONE 9 (6): 9.

Whittaker K, Koo MS, Wake DB, Vredenburg VT (2013) Global Declines of Amphibians. In: Encycl. Biodivers. Elsevier. pp 691–699.

Jones DK, Hammond JI, Relyea RA (2009) Very Highly Toxic Effects of Endosulfan Across Nine Species of Tadpole: Lag Effects and Family-level Sensitivity. Environmental Toxicology and Chemistry 28 (9): 1939. DOI: 10.1897/09-033.1.

Mann RM, Hyne RV, Choung CB, Wilson ScottP (2009) Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environmental Pollution 157 (11): 2903–2927. DOI: 10.1016/j.envpol.2009.05.015.

Mainguy G, Bishop PJ, Angulo A, et al. The Amphibian Extinction Crisis - what will it take to put the action into the Amphibian Conservation Action Plan? 16.

Egea-Serrano A, Rick A. R, Miguel T, Mar T (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. 16.

Groner ML, Relyea RA (2011) A tale of two pesticides: how common insecticides affect aquatic communities: A tale of two pesticides. Freshwater Biology 56 (11): 2391–2404. DOI: 10.1111/j.1365-2427.2011.02667x.

Bernabò I, Sperone E, Tripepi S, Brunelli E (2011) Toxicity of Chlorpyrifos to Larval Rana dalmatina: Acute and Chronic Effects on Survival, Development, Growth and Gill Apparatus. Archives of Environmental Contamination and Toxicology 61 (4): 704–718. DOI: 10.1007/s00244-011-9655-1.

Brodeur JC, Suarez RP, Natale GS et al. (2011) Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicology and Environmental Safety 74 (5): 1370–1380. DOI: 10.1016/j.ecoenv.2011.04.024.

Smith GR, Krishnamurthy SV, Burger AC, Mills LB (2011) Differential Effects of Malathion and Nitrate Exposure on American Toad and Wood Frog Tadpoles. Archives of Environmental Contamination and Toxicology 60 (2): 327–335. DOI: 10.1007/s00244-010-9559-5.

Sparling DW, Fellers G (2007) Comparative toxicity of Chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environmental Pollution 5.

Yan D, Jiang X, Xu S et al. (2008) Quantitative structure–toxicity relationship study of lethal concentration to tadpole (Bufo vulgaris formosus) for organophosphorus pesticides. Chemosphere 71 (10): 1809–1815. DOI: 10.1016/j.chemosphere.2008.02.033.

Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environmental Health 7 (1): 50. DOI: 10.1186/1476-069X-7-50.

Da Silva MB, Fraga RE, Silva FL, et al. (2020) Effects of acute exposure of Chlorpyrifos on the survival, morphology, and swimming ability of Odontophrynus carvalhoi tadpoles. Ecotoxicology and Environmental Contamination 15 (1): 37–42. DOI: 10.5132/eec.2020.01.05.

Koshlukova, S. E., & Reed, N. R. 2014. Chlorpyrifos. in Encyclopedia of Toxicology (pages. 930–934). Elsevier. DOI: 10.1016/B978-0-12-386454-3.00115-9.

Colombo A, Orsi F, Bonfanti P (2005) Exposure to the organophosphorus pesticide Chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae. Chemosphere 61 (11): 1665–1671. DOI: 10.1016/j.chemosphere.2005.04.005.

Deb N, Das S (2013) Chlorpyrifos Toxicity in Fish: A Review. 8 9.

Yin X, Zhu G, Li XB, Liu S (2009) Genotoxicity evaluation of Chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by Comet assay and Micronucleus test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 680 (1–2): 2–6. DOI: 10.1016/j.mrgentox.2009.05.018.

Palenske NM, Nallani GC, Dzialowski EM (2010) Physiological effects and bioconcentration of triclosan on amphibian larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 152 (2): 232–240. DOI: 10.1016/j.cbpc.2010.04.009.

Aronzon CM, Sandoval MT, Herkovits J, Pérez-Coll CS (2011) Stage-dependent toxicity of 2,4-dichlorophenoxyacetic on the embryonic development of a South American toad, Rhinella arenarum. Environmental Toxicology 26 (4): 373–381. DOI: 10.1002/tox.20564.

Ruiz de Arcaute C, Salgado Costa C, Demetrio PM et al. (2012) Influence of existing site contamination on sensitivity of Rhinella fernandezae (Anura, Bufonidae) tadpoles to Lorsban®48E formulation of Chlorpyrifos. Ecotoxicology. DOI: 10.1007/s10646-012-0990-4.

Pablo F, Krassoi FR, Jones PRF et al. (2008) Comparison of the fate and toxicity of Chlorpyrifos—Laboratory versus a coastal mesocosm system. Ecotoxicology and Environmental Safety 71 (1): 219–229. DOI: 10.1016/j.ecoenv.2007.08.022.

Gurushankara HP, Krishnamurthy SV, Vasudev V (2007) Effect of Malathion on Survival, Growth, and Food Consumption of Indian Cricket Frog (Limnonectus limnocharis) Tadpoles. Archives of Environmental Contamination and Toxicology 52 (2): 251–256. DOI: 10.1007/s00244-006-0015-5.

Nataraj MB, Krishnamurthy SV (2012) Effects of combinations of malathion and cypermethrin on survivability and time of metamorphosis of tadpoles of Indian cricket frog (Fejervarya limnocharis). Journal of Environmental Science and Health, Part B 47 (2): 67–73. DOI: 10.1080/03601234.2012.611428.

Kurniawan N, Daicus M B, Hoi S Y, Masayuki S (2009) Conservation of Fejervarya cancrivora by Artificial Reproduction. ISBN 978-602-95471-0-8.

Gosner, K.L., 1960. A simplified table for staging Anuran embryos and larvae with notes on identification. Herpetologica, 16, 183-189. https://DOI.org/10.2307/3890061.

GHS, 2018. Environmental Risk Assessment. Glob. Harmon. Syst. Classif. Label. Chem. URL https://www.chemsafetypro.com/Topics/CRA/ecotox_aquatic_toxicity.html. Last accessed July 2020.

Nataraj MBR, Krishnamurthy SVB (2020) Individual and combined effects of organophosphate and carbamate pesticides on the cricket frog Fejervarya limnocharis. Environmental Geochemistry and Health 42 (6): 1767–1774. DOI: 10.1007/s10653-019-00418-z.

Nataraj MB, Krishnamurthy SV (2013) Exposure of tadpoles of Fejervarya limnocharis (Anura: Ranidae) to combinations of carbaryl and cypermethrin. Toxicological & Environmental Chemistry 95 (8): 1408–1415. DOI: 10.1080/02772248.2014.881828.

Abbasi, S.A., Soni, R (1991) Evaluation of water quality criteria for four common pesticides on the basis of computer-aided studies. Indian J. Env. Heal. 33, 22–24.

https://DOI.org/10.3389/fpubh.2016.00148.

Rutkoski CF, Macagnan N, Folador A, et al. (2020) Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide Chlorpyrifos. Chemosphere 250 126162. DOI: 10.1016/j.chemosphere.2020.126162.

Ruiz de Arcaute C, Salgado Costa C, Demetrio PM et al. (2012) Influence of existing site contamination on sensitivity of Rhinella fernandezae (Anura, Bufonidae) tadpoles to Lorsban®48E formulation of Chlorpyrifos. Ecotoxicology. DOI: 10.1007/s10646-012-0990-4.

Cowman, D.F., Manzanti, L.E (2000) Ecotoxicology of ‘“new generationâ€â€™ pesticides to amphibians, in Sparling DW, Bishop CA, Linder G (Eds.), Ecotoxicology of amphibi

ans and reptiles. Pensacola, FL: SETAC: 233-268.

Sparling DW, Fellers GM (2009) Toxicity of Two Insecticides to California, USA, Anurans and Its Relevance to Declining Amphibian Populations. Environmental Toxicology and Chemistry 28 (8): 1696. DOI: 10.1897/08-336.1.

Barreto E, Salgado Costa C, Demetrio P et al. (2020) Sensitivity of Boana pulchella (Anura: Hylidae) Tadpoles to Environmentally Relevant Concentrations of Chlorpyrifos: Effects at the Individual and Biochemical Levels. Environmental Toxicology and Chemistry 39 (4): 834–841. DOI: 10.1002/etc.4664.

Eisler R, Gardner GR (1973) Acute toxicology to an estuarine teleost of mixtures of cadmium, copper, and zinc salts. Journal of Fish Biology 5 (2): 131–142. DOI: 10.1111/j.1095-8649.1973.tb04441.x.

Gómez-Canela C, Prats E, Piña B, Tauler R (2017) Assessment of Chlorpyrifos toxic effects in zebrafish (Danio rerio) metabolism. Environmental Pollution 220 1231–1243. DOI: 10.1016/j.envpol.2016.11.010.

Colombo A, Orsi F, Bonfanti P (2005) Exposure to the organophosphorus pesticide Chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae. Chemosphere 61 (11): 1665–1671. DOI: 10.1016/j.chemosphere.2005.04.005.

Deb N, Das S (2013) Chlorpyrifos toxicity in fish: A Review. Curr World Environ J. DOI: 10.12944/CWE.8.1.17

Cherin P (1997) Recognition and Management of Myositis: Drugs 54 (1): 39–49. DOI: 10.2165/00003495-199754010-00003.

Widder PD, Bidwell JR (2008) Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of Chlorpyrifos. Aquatic Toxicology 88 (1): 9–18. DOI: 10.1016/j.aquatox.2008.02.008.

Wells P, Bhuller Y, Chen C et al. (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicology and Applied Pharmacology 207 (2): 354–366. DOI: 10.1016/j.taap.2005.01.061.

Liendro N, Ferrari A, Mardirosian M et al. (2015) Toxicity of the insecticide Chlorpyrifos to the South American toad Rhinella arenarum at the larval developmental stage. Environmental Toxicology and Pharmacology 39 (2): 525–535. DOI: 10.1016/j.etap.2014.12.022.

Jin Y, Zheng S, Pu Y et al. (2011) Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage, and apoptosis in adult zebrafish (Danio rerio). Chemosphere 82 (3): 398–404. DOI: 10.1016/j.chemosphere.2010.09.072.

Jin Y, Liu Z, Peng T, Fu Z (2015) The toxicity of Chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress, and immunotoxicity. Fish & Shellfish Immunology 43 (2): 405–414. DOI: 10.1016/j.fsi.2015.01.010.

Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety 64 (2): 178–189. DOI: 10.1016/j.ecoenv.2005.03.013.

Li B, Ma Y, Zhang YH (2017) Oxidative stress and hepatotoxicity in the frog, Rana chensinensis, when exposed to low doses of trichlorfon. Journal of Environmental Science and Health, Part B 52 (7): 476–482. DOI: 10.1080/03601234.2017.1303321.

Rohr JR, Madison DM (2003) Dryness increases predation risk in efts: support for an amphibian decline hypothesis. Oecologia 135 (4): 657–664. DOI: 10.1007/s00442-003-1206-7.

Attademo AM, Sanchez-Hernandez JC, Lajmanovich RC et al. (2017) Effect of diet on carboxylesterase activity of tadpoles (Rhinella arenarum) exposed to Chlorpyrifos. Ecotoxicology and Environmental Safety 135 10–16. DOI: 10.1016/j.ecoenv.2016.09.012.

Mehta, A., Verma, R.S., Srivastava, N (2005) Chlorpyrifos-induced alterations in rat brain acetylcholinesterase, lipid peroxidation, and ATPases. Indian J. Biochem. Biophys. 42, 54–5

Coats, J.R (2008) Toxicology of synthetic pyrethroid insecticides in fish: a case study, in di Giulio, R.T., Hinton, D.E. (Eds.), The toxicology of fishes. Boca Raton, FL: CRC Press, Taylor and Francis Group, pp. 805-818.

Ingermann RL, Bencic DC, Verrell P (2002) Methoxychlor Alters the Predator-Prey Relationship Between Dragonfly Naiads and Salamander Larvae. Bulletin of Environmental Contamination and Toxicology 68 (6): 771–778. DOI: 10.1007/s00128-002-0022-9.

Güngördü A (2013) Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis. Aquatic Toxicology 140–141 220–228. DOI: 10.1016/j.aquatox.2013.06.012.

Downloads

Published

2022-06-06

Issue

Section

Articles