Potential of Single Garlic to Prevent Pro Inflammatory Macrophage and Inflammation in HFD Mice


  • Putri Diyah Anggraini Universitas Negeri Malang
  • Miftahul Mufinadiroh Universitas Negeri Malang
  • Hendra Susanto Universitas Negeri Malang
  • Betty Lukiati Universitas Negeri Malang
  • Sri Rahayu Lestari Universitas Negeri Malang




Single Bulb Garlic, HFD, macrophage, CD11b, TNF-α, IL-1b, spleen


A high-fat-enriched diet causes an increase in the level of oxidized LDL (Ox-LDL) in the blood. The presence of Ox-LDL will activate macrophages to secrete pro-inflammatory cytokines and lead to severe inflammation. Single bulb garlic has a potential anti-inflammatory effect due to of high-fat diet. This research aimed to investigate the effect of single bulb garlic extract (SBGE) on the pro-inflammatory cytokines TNF-α (CD11b+TNF-α+) and IL-1b (CD11b+IL-1b+) in the spleen, spleen weight, and TNF-α secretion in HFD mice. Twenty-four mice were divided into six groups: normal (healthy mice); HFD (HFD mice without any treatment); HFD + Simvastatin (HFD mice receiving simvastatin); HFD + SBGE 100; HFD + SBGE 200; and HFD + SBGE 400 (HFD mice receiving 100, 200, and 400 mg/kg BW of SBGE for 4 weeks). Blood serum was collected at the end of treatment, and macrophage was isolated from the spleen. The relative number of CD11b+TNF-α+ and CD11b+IL-1b+ were examined using flow cytometry. SBGE treatment significantly (p<0.05) reduced the spleen weight and the relative number of CD11b+TNF-α+ and CD11b+IL-1b+ in the spleen of HFD mice. SBGE treatment also prevents the elevation of TNF- α levels in the blood serum. The optimal dose of SBGE to diminish the relative number of CD11b+TNF-α+, CD11b+IL-1b+ in the spleen, and TNF-α in the serum was 100 mg/kg BW.


Jang, G. J. et al. (2018) ‘Metabolomics analysis of the lipid-regulating effect of allium hookeri in a hamster model of high-fat diet-induced hyperlipidemia by UPLC/ESI-Q-TOF mass spectrometry’, Evidence-based Complementary and Alternative Medicine, 2018. doi: 10.1155/2018/5659174.

Silva Afonso, M. et al. (2018) ‘Molecular pathways underlying cholesterol homeostasis’, Nutrients, 10(6), pp. 1–18. doi: 10.3390/nu10060760.

Yurina, V. et al. (2019) ‘Prolonged-heated High-Fat Diet Increase the Serum LDL Cholesterol Level and Induce the Early Atherosclerotic Plaque Development in Wistar Rats’, Journal of Tropical Life Science, 9(1), pp. 9–14. doi: 10.11594/jtls.09.01.02.

Ayala, A., Muñoz, M. F. and Argüelles, S. (2014) ‘Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal’, Oxidative Medicine and Cellular Longevity, 2014. doi: 10.1155/2014/360438.

Trpkovic, A. et al. (2015) ‘Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases’, Critical Reviews in Clinical Laboratory Sciences. Informa Healthcare USA, Inc, 52(2), pp. 70–85. doi: 10.3109/10408363.2014.992063.

Cochain, C. and Zernecke, A. (2017) ‘Macrophages in vascular inflammation and atherosclerosis’, Pflugers Archiv European Journal of Physiology. Pflügers Archiv - European Journal of Physiology, 469(3–4), pp. 485–499. doi: 10.1007/s00424-017-1941-y.

Moriya, J. (2019) ‘Critical roles of inflammation in atherosclerosis’, Journal of Cardiology. Japanese College of Cardiology, 73(1), pp. 22–27. doi: 10.1016/j.jjcc.2018.05.010.

Borges Da Silva, H. et al. (2015) ‘Splenic macrophage subsets and their function during blood-borne infections’, Frontiers in Immunology, 6(SEP). doi: 10.3389/fimmu.2015.00480.

Raggi, P. et al. (2018) ‘Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions’, Atherosclerosis. Elsevier Ltd, 276, pp. 98–108. doi: 10.1016/j.atherosclerosis.2018.07.014

Lestari, S. R. and Rifa’i, M. (2018) ‘Regulatory T cells and anti-inflammatory cytokine profile of mice fed a high-fat diet after single-bulb garlic (Allium sativum L.) oil treatment’, Tropical Journal of Pharmaceutical Research, 17(11), pp. 2157–2162. doi: 10.4314/tjpr.v17i11.7.

Lestari, S. R. and Rifa’I, M. (2018) ‘Effect of Single Garlic Oil for Homeostasis of CD4+CD25+ Immuno-regulatory T Cells Controlling Hypercholesterolemia’, Journal of Physics: Conference Series, 1093(1). doi: 10.1088/1742-6596/1093/1/012018.

Chung, L. Y. (2006b) ‘The antioxidant properties of garlic compounds: Alyl cysteine, alliin, allicin, and allyl disulfide’, Journal of Medicinal Food, 9(2), pp. 205–213. doi: 10.1089/jmf.2006.9.205.

Rahman, M. S. (2007) ‘Allicin and other functional active components in garlic: Health benefits and bioavailability’, International Journal of Food Properties, 10(2), pp. 245–268. doi: 10.1080/10942910601113327.

C, P. B., R, D. A. and Cr, H. (2013) ‘Detail Comparative Pharmacognostical Study of Single Bulb and Multi Bulb Lasuna ( Garlic ).’, 02(02), pp. 181–186.

Ilmawati, R. R., Gofur, A. and Lestari, S. R. (2019) ‘Single bulb garlic oil improves interleukin-6 via decreased reactive oxygen species (ROS) in high-fat diet male mice’, Universa Medicina, 38(2), p. 100. doi: 10.18051/univmed.2019.v38.100-107.

Arifah, S. N. et al. (2020) ‘Herbal medicine from single clove garlic oil extract ameliorates hepatic steatosis and oxidative status in high fat diet mice’, Malaysian Journal of Medical Sciences, 27(1), pp. 46–56. doi: 10.21315/mjms2020.27.1.5.

Febbraio, M., Hajjar, D. P. and Silverstein, R. L. (2001) ‘CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism’, Journal of Clinical Investigation, 108(6), pp. 785–791. doi: 10.1172/jci200114006.

Itabe, H., Obama, T. and Kato, R. (2011) ‘The Dynamics of Oxidized LDL during Atherogenesis’, Journal of Lipids, 2011, pp. 1–9. doi: 10.1155/2011/418313.

Magwenzi, S. et al. (2015) ‘Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade’, Blood, 125(17), pp. 2693–2703. doi: 10.1182/blood-2014-05-574491.

Chatauret, N. et al. (2014) ‘Diet-induced increase in plasma oxidized LDL promotes early fibrosis in a renal porcine auto-transplantation model’, Journal of Translational Medicine, 12(1), pp. 1–11. doi: 10.1186/1479-5876-12-76.

Bae, Y. S. et al. (2009) ‘Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2’, Circulation research, 104(2), pp. 210–218. doi: 10.1161/CIRCRESAHA.108.181040.

Bekkering, S. et al. (2014) ‘Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes’, Arteriosclerosis, Thrombosis, and Vascular Biology, 34(8), pp. 1731–1738. doi: 10.1161/ATVBAHA.114.303887.

Charney, L. H. and Vascular, R. B. (2015) ‘Macrophages in atherosclerosis : a dynamic balance’, 13(10), pp. 709–721. doi: 10.1038/nri3520.Macrophages.

Torello, C. O., Paredes Gamero, E. J. and Martins, F. (2016) ‘Extramedular Hematopoiesis in the Spleen of Obese Mice Modulation by the Alga Chlorella’, Medicinal & Aromatic Plants, 05(06). doi: 10.4172/2167-0412.1000275.

Gomaa, A. M. S. and El-Aziz, E. A. A. (2017) ‘Vitamin D reduces high-fat diet induced weight gain and C-reactive protein, increases interleukin-10, and reduces CD86 and caspase-3’, Pathophysiology, 24(1), pp. 31–37. doi: 10.1016/j.pathophys.2017.01.003.

Bruck, R. et al. (2005) ‘Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice’, Liver International, 25(3), pp. 613–621. doi: 10.1111/j.1478-3231.2005.01050.x.

Chung, L. Y. (2006a) ‘The Antioxidant Properties of Garlic Compounds ’:, Journal of Medicianl Food, 9(2), pp. 205–213.

Birben, E. et al. (2012) ‘Oxidative stress and antioxidant defense’, World Allergy Organization Journal, 5(1), pp. 9–19. doi: 10.1097/WOX.0b013e3182439613.

Lee, D. Y. et al. (2012) ‘Anti-inflammatory activity of sulfur-containing compounds from garlic’, Journal of Medicinal Food, 15(11), pp. 992–999. doi: 10.1089/jmf.2012.2275.

Nimse, S. B. and Pal, D. (2015) ‘Free radicals, natural antioxidants, and their reaction mechanisms’, RSC Advances. Royal Society of Chemistry, 5(35), pp. 27986–28006. doi: 10.1039/c4ra13315c.

Aggarwal, B. B. and Shishodia, S. (2004) ‘Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: Reasoning for seasoning’, Annals of the New York Academy of Sciences, 1030, pp. 434–441. doi: 10.1196/annals.1329.054.

Le Rossignol, S., Ketheesan, N. and Haleagrahara, N. (2018) ‘Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis’, International Reviews of Immunology, 37(3), pp. 129–143. doi: 10.1080/08830185.2017.1363198.

Orecchioni, M. et al. (2019) ‘Macrophage polarization: Different gene signatures in M1(Lps+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages’, Frontiers in Immunology, 10(MAY), pp. 1–14. doi: 10.3389/fimmu.2019.01084.

Di Paolo, N. C. et al. (2015) ‘Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection’, Immunity. Elsevier Inc., 43(6), pp. 1125–1136. doi: 10.1016/j.immuni.2015.11.016.



2022-02-17 — Updated on 2022-02-17