Occurrence and identification of Basidiomycetous Fomitopsis species the causal agent of Brown-rot in oil palm Elaeis guineensis in Johor, Malaysia


  • Muhammad Muhammad Dept. of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Roswanira Abdul Wahab Dept. of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Mohd Hefni Rusli Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysia Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • Fahrul Huyop Dept. of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia




Brown-rot fungi, Fomitopsis, Basidiomycota, Phytopathogen, Oil palm (Elaeis guineensis).


Macro fungi belonging to the family “Polyporaceae†in the phylum Basidiomycota are among the commonplace causal agents of plant diseases. In the present study, we reported the molecular characterization of a macro fungi basidiomycetous brown-rot fungal phytopathogen Fomitopsis strain MM4. The fungal phytopathogen was identified and molecular characterized from the infected stem and tissue of oil palm (Elaeis guineensis) in Kulai, Johor. The 18SrRNA nucleotide sequence of the fungal pathogen strain MM4 showed 99% similarity with partial sequences of Antrodia serialis maintained in the genebank database. The pairwise multiple sequence alignment and phylogenetic analysis revealed that the fungus clustered into a single branch of a phylogenetic tree; hence the fungus was designated as Fomitopsis meliae (MM4). The pathogenicity test revealed significant differences (p ≤ 0.05) in disease severity caused by the characterized basidiomycetous brown-rot F. meliae fungal pathogen on oil palm seedlings and the pathogen was successfully re-isolated from infected samples. To the best of our knowledge, this is the first report of 18S rRNA F. meliae Basidiomycota brown-rot fungi infecting oil palm (Elaeis guineensis). The findings of this study thus support the diversity of pathogenic macro fungi affecting oil palm trees in Malaysia.

Author Biography

Roswanira Abdul Wahab, Dept. of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

Chemistry, Associate Professor


Onoja, E., Chandren, S., Razak, F. I. A., Mahat, N. A., and Wahab, R. A. (2019). Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste and Biomass Valorization, 10(8), 2099-2117.

Onoja, E., Chandren, S., Razak, F. I. A., and Wahab, R. A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of biotechnology, 283, 81-96.

Mazaheri, H., Lee, K. T., Bhatia, S., and Mohamed, A. R. (2010). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents. Bioresource technology, 101(19), 7641-7647.

Ali, N. S., Asmieda, W. N., and Sagaff, S. A. S. (2021). First Report on the Fungal Pathogens Associated with Leaf Tip Blight of Oil Palm at Nursery Stage in Malaysia. Journal of Current Opinion in Crop Science, 2(1), 27-39.

Naidu, Y., Siddiqui, Y., and Idris, A. S. (2020). Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. Journal of environmental management, 259, 110056.

Kamarudin, N., Seman, I. A., and Masri, M. M. M. (2019). Crospects in sustainable control of oil palm pests and diseases through the enhancement of ecosystem services-the way forward. Journal of Oil Palm Research, 31(3), 381-393

Noor Azmi, A. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., and Husin, N. A. (2020). Early Detection of Ganoderma boninense in Oil Palm Seedlings Using Support Vector Machines. Remote Sensing, 12(23), 3920.

Siddiqui, Y., Surendran, A., Paterson, R. R. M., Ali, A., and Ahmad, K. (2021). Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi Journal of Biological Sciences.

Rebitanim, N. A., Hanafi, M. M., Idris, A. S., Abdullah, S. N. A., Mohidin, H., and Rebitanim, N. Z. (2020). GanoCare® Improves Oil Palm Growth and Resistance against Ganoderma Basal Stem Rot Disease in Nursery and Field Trials. BioMed research international, 2020.

Pinruan, U., Rungjindamai, N., Choeyklin, R., Lumyong, S., Hyde, K. D., and Jones, E. G. (2010). Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Diversity, 41(1), 71-88.

Rytioja, J., Hildén, K., Yuzon, J., Hatakka, A., De Vries, R. P., and Mäkelä, M. R. (2014). Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews, 78(4), 614-649.

Krah, F.-S., Bässler, C., Heibl, C., Soghigian, J., Schaefer, H., and Hibbett, D. S. (2018). Evolutionary dynamics of host specialization in wood-decay fungi. BMC evolutionary biology, 18(1), 1-13.

Ruiz-Duenas, F. J., Lundell, T., Floudas, D., Nagy, L. G., Barrasa, J. M., Hibbett, D. S., et al. (2013). Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia, 105(6), 1428-1444.

Shrestha, B. G., Ghimire, S., Bhattarai, S., Phuyal, S., and Thapa, B. (2016). Isolation and screening of potential cellulolytic and xylanolytic bacteria from soil sample for degradation of lignocellulosic biomass. Journal of Tropical Life Science, 6(3), 93192.

Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A., and Ismail, N. (2020). Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review. Sustainability, 12(18), 7282.

Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., et al. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences, 111(27), 9923-9928.

Goodell, B., Winandy, J. E., and Morrell, J. J. (2020). Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings, 10(12), 1210.

Janusz, G., Pawlik, A., Sulej, J., Świderska-Burek, U., Jarosz-Wilkołazka, A., and Paszczyński, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS microbiology reviews, 41(6), 941-962.

Han, M.-L., Chen, Y.-Y., Shen, L.-L., Song, J., Vlasák, J., Dai, Y.-C., et al. (2016). Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Diversity, 80(1), 343-373.

Haight, J.-E., Nakasone, K. K., Laursen, G. A., Redhead, S. A., Taylor, D. L., and Glaeser, J. A. (2019). Fomitopsis mounceae and F. schrenkii—two new species from North America in the F. pinicola complex. Mycologia, 111(2), 339-357.

Han, M.-L., and Cui, B.-K. (2015). Morphological characters and molecular data reveal a new species of Fomitopsis (Polyporales) from southern China. Mycoscience, 56(2), 168-176.

Ortiz-Santana, B., Lindner, D. L., Miettinen, O., Justo, A., and Hibbett, D. S. (2013). A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia, 105(6), 1391-1411.

Glaeser, J. A., and Smith, K. T. (2010). Decay fungi of oaks and associated hardwoods for western arborists. Western Arborist. Winter 2010: 32-46., 32-46.

Li, H.-J., Han, M.-L., and Cui, B.-K. (2013). Two new Fomitopsis species from southern China based on morphological and molecular characters. Mycological Progress, 12(4), 709-718.

Scharpf, R. F., and Goheen, D. (1993). Heart rots. RF Scharpf, technical coordinator. Diseases of Pacific Coast Conifers. USDA Forest Service, Agric. Handbook, 521, 150-180.

Rungjindamai, N., Pinruan, U., Choeyklin, R., Hattori, T., and Jones, E. (2008). Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis. Thailand. Fungal Divers, 33, 139-161.

Mandal, P., Tiru, Z., Sarkar, M., Chakroborty, A. P., and Pal, A. (2021). In vitro antagonistic study of maize root colonizing fungal isolates against Fusarium moniliforme causing ear rot disease of maize. Journal of Tropical Life Science, 11(2).

Linde, G. A., Luciani, A., Lopes, A. D., Valle, J. S. d., and Colauto, N. B. (2018). Long-term cryopreservation of basidiomycetes. brazilian journal of microbiology, 49(2), 220-231.

Lusta, K. A., Kochkina, G. A., Sul, I. W., Chung, I., Park, H., and Shin, D. (2003). An integrated approach to taxonomical identification of the novel filamentous fungus strain producing extracellular lipases: morphological, physiological and DNA fingerprinting techniques. Fungal Diversity, 12, 135-149.

Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic acids research, 19(6), 1349.

Raeder, U., and Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1(1), 17-20.

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.

Bochner, B., and Ralha, M. C. (1997). Multi-test format with gel-forming matrix for characterization of microorganisms: Google Patents.

Wahhab, B. H. A., Anuar, N. F. S. K., Wahab, R. A., Al-Nimer, M. S., Samsulrizal, N. H., Hamid, A. A. A. (2020). Characterization of a 2, 2-Dichloropropionic Acid (2, 2-DCP) Degrading Alkalotorelant Bacillus megaterium strain BHS1 Isolated from Blue Lake in Turkey.

Goh, Y. K., Marzuki, N. F., Goh, T. K., Tan, S. Y., Goh, Y. K., and Goh, K. J. (2016). Mycoparasitic Scytalidium parasiticum as a potential biocontrol agent against Ganoderma boninense basal stem rot in oil palm. Biocontrol Science and Technology, 26(10), 1352-1365.

Naidu, Y., Siddiqui, Y., Rafii, M. Y., Saud, H. M., and Idris, A. S. (2018). Inoculation of oil palm seedlings in Malaysia with white rot hymenomycetes: Assessment of pathogenicity and vegetative growth. Crop Protection, 110, 146-154.

Nusaibah, S., Saad, G., and Tan, G. H. (2017). Antagonistic Efficacy of Trichoderma harzianum and Bacillus cereus against Ganoderma Disease of Oil Palm via Dip, Place and Drench (DPD) Artificial Inoculation Technique. International Journal of Agriculture and Biology, 19(2).

Sundram, S., Meon, S., Seman, I. A., and Othman, R. (2015). Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza, 25(5), 387-397.

Khalili, E., Javed, M. A., Huyop, F., Rayatpanah, S., Jamshidi, S., and Wahab, R. A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 30(3), 479-488.

Chaube, H., and Pundhir, V. (2005). Crop diseases and their management: PHI Learning Pvt. Ltd.

Liu, S., Han, M.-L., Xu, T.-M., Wang, Y., Wu, D.-M., and Cui, B.-K. (2021). Taxonomy and phylogeny of the Fomitopsis pinicola complex with descriptions of six new species from East Asia. Frontiers in Microbiology, 12.

Nusaibah, S., Latiffah, Z., and Hassaan, A. (2011). ITS-PCR-RFLP analysis of Ganoderma sp. infecting industrial crops. Pertanika J. Trop. Agric. Sci, 34(1), 83-91.

Utomo, C., Werner, S., Niepold, F., and Deising, H. (2005). Identification of Ganoderma, the causal agent of basal stem rot disease in oil palm using a molecular method. Mycopathologia, 159(1), 159-170.

Blumenstein, K., Macaya-Sanz, D., Martín, J. A., Albrectsen, B. R., and Witzell, J. (2015). Phenotype Micro Arrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Frontiers in microbiology, 6, 1033.

Mackie, A. M., Hassan, K. A., Paulsen, I. T., and Tetu, S. G. (2014). Biolog phenotype microarrays for phenotypic characterization of microbial cells. In Environmental Microbiology (pp. 123-130): Springer.

Taylor, J. (1974). Biochemical tests for identification of mycelial cultures of basidiomycetes. Annals of Applied Biology, 78(2), 113-123.

Wang, Q., Lin, H., Shen, Q., Fan, X., Bai, N., and Zhao, Y. (2015). Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1. PLoS One, 10(3), e0119237.

Dresch, P., Rosam, K., Grienke, U., Rollinger, J. M., and Peintner, U. (2015). Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. Amb Express, 5(1), 1-14.

Zhao, Y., Liu, X.-z., and Bai, F.-y. (2019). Four new species of Tremella (Tremellales, Basidiomycota) based on morphology and DNA sequence data. MycoKeys (47), 75.

Amore, A., Giacobbe, S., and Faraco, V. (2013). Regulation of cellulase and hemicellulase gene expression in fungi. Current genomics, 14(4), 230-249.

Idris, A., Kushairi, A., Ismail, S., and Ariffin, D. (2004). Selection for partial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res, 16(2), 12-18.

Idris, A., Kushairi, D., Ariffin, D., and Basri, M. (2006). Technique for inoculation of oil palm germinated seeds with Ganoderma. MPOB Inf Ser, 314, 1-4.

Roccotelli, A., Schena, L., Sanzani, S. M., Cacciola, S. O., Mosca, S., Faedda, R., et al. (2014). Characterization of Basidiomycetes associated with wood rot of citrus in southern Italy. Phytopathology, 104(8), 851-858.

de Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., and Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PloS one, 13(1), e0191884.

Bewick, V., Cheek, L., and Ball, J. (2004). Statistics review 9: one-way analysis of variance. Critical care, 8(2), 1-7.



2022-02-17 — Updated on 2022-02-17