<i>In silico</i> Characterization of UGT74G1 Protein in <i>Stevia rebaudiana</i> Bertoni Accession MS007


  • Afiqah Rahmatullah Khan Department of Plant Science, Kulliyyah of Science, International Islamic University of Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
  • Nor Iwani Mokhtar Department of Plant Science, Kulliyyah of Science, International Islamic University of Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
  • Zarina Zainuddin Department of Plant Science, Kulliyyah of Science, International Islamic University of Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
  • Nurul Hidayah Samsulrizal Nurul Hidayah Binti SamsulrizalAssistant ProfessorKullyyiah of ScienceIIUM Kuantan Campus hidayahsamsulrizal@iium.edu.my 5158




Stevia rebaudiana is being promoted as an alternative sweetener in particular for diabetic and obese patients due to its low-calorie property. The steady demand in the market for high-quality stevia extracts presents a challenge for enhanced production of steviol glycosides that are safe for human consumption. This study characterized the structure and content of gene involved in the production of UGT74G1 protein for S. rebaudiana accession MS007 through in silico analysis using transcriptome dataset of stevia MS007.  Homologous search using BLASTp show high similarity to Q6VAA6 RecName: Full=UDP-glycosyltransferase 74G1 (S. rebaudiana) as the top hit sequences. InterPro family and domain protein motif search revealed the presence and entry of IPR002213 and IPR035595. The construction of the phylogenetic tree was done by selecting 19 out of 102 protein sequences from BLASTp. The phylogenetic analysis showed the same protein family which is Asteraceae. ProtParam Ex-Pasy, PSIPRED and Phyre2 computed the primary, secondary, and tertiary structures for UGT74G1 protein. The UGT74G1 predicted tertiary structure scored 100.0% confidence by the single highest scoring template and coverage of 96%. The model has dimensions (Å) of X: 57.609, Y: 70.386, and Z: 58.351. Outcomes of this research will help to enhance the understanding of UDP-glycosyltransferase 74G1 (S. rebaudiana MS007) characteristic and enhance target identification processes to improve understanding of protein-protein interaction in S. rebaudiana MS007.

Author Biography

Nurul Hidayah Samsulrizal, Nurul Hidayah Binti SamsulrizalAssistant ProfessorKullyyiah of ScienceIIUM Kuantan Campus hidayahsamsulrizal@iium.edu.my 5158

Nurul Hidayah Binti Samsulrizal Assistant Professor


Ashwell M (2015) Stevia, Nature's Zero-Calorie Sustainable Sweetener: A New Player in the Fight Against Obesity. Nutrition Today 50 (3): 129–134. doi:10.1097/nt.0000000000000094

PureCircle Stevia Institute (2019) Where Does Stevia Come from? https://www.purecirclesteviainstitute.com/resources/infographics/stevia-facts/where-does-stevia-come-from/. Accessed date: October 2019.

Razali A, Samsulrizal NH, Zainuddin Z (2020) Identification of genes involved in flowering in Stevia rebaudiana using expressed sequence tags (ESTs). Asia-Pacific Journal of Molecular Biology and Biotechnology 28 (2): 105–112. doi: 10.35118/apjmbb.2020.028.2.09

Aranda-González I, Betancur-Ancona D, Chel-Guerrero L, Moguel-Ordóñez Y (2017) Effect of Different Drying Methods on the Composition of Steviol Glycosides in Stevia rebaudiana Bertoni leaves. International Agrophysics 31 (1): 139 – 144. doi: 10.1515/intag-2016-0036

Samsulrizal NH, Zainuddin Z, Noh AL, Sundram TC (2019) A Review of Approaches in Steviol Glycosides Synthesis. International Journal of Life Sciences and Biotechnology 2 (3): 145–157. doi: 10.38001/ijlsb.577338

Osman HS, Osman M, Zainuddin Z (2018) Genetic variabilities of Stevia rebaudiana Bertoni Cultivated in Malaysia as Revealed by Morphological, Chemical and Molecular Characterisations. Agrivita 40 (2): 267-283. doi: 10.17503/agrivita. v40i2.1365

Pang MD, Goossens GH, Blaak EE (2020) The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition 7.

Richman A, Swanson A, Humphrey T et al. (2005) Functional Genomics Uncovers Three Glucosyltransferases Involved in The Synthesis of The Major Sweet Glucosides of Stevia rebaudiana. Plant Journal 41(1): 56–67. doi:10.1111/j.1365-313X. 2004.02275.x.

Samsulrizal NH, Khadzran KS, Shaarani SH et al. (2020) De novo Transcriptome Dataset of Stevia rebaudiana Accession MS007. Data in Brief 28 (104811). doi.org/10.1016/j.dib.2019.104811.

Artimo P, Jonnalagedda M, Arnold K et al. (2012) ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Research 40 (W1): W597-W603. doi: 10.1093/nar/gks400

NCBI Resource Coordinators (2018) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 46 (D1): D8–D13. doi: 10.1093/nar/gkx1095

Blum M, Chang H, Chuguransky S et al. (2020) The InterPro Protein Families and Domains Database: 20 years on. Nucleic Acids Research 49 (D1): D344 – D354. doi: 10.1093/nar/gkaa977

Mistry J, Chuguransky S, Williams L et al. (2020) Pfam: The Protein Families Database in 2021. Nucleic Acids Research 4 (D1): D412 – D419.doi: 10.1093/nar/gkaa913

Letunic I, Khedkar S, Bork P (2020) SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Research 49 (D1): D458-D460. doi: 10.1093/nar/gkaa937

Gasteiger E, Hoogland C, Gattiker A et al. (2005) Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook. Humana Press: 571-607. Accessed date: July 2020.

Madeira F, Park YM, Lee J et al. (2019) The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Research 47 (W1): W636-W641. doi: 10.1093/nar/gkz268.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35: 1547-1549. doi:10.1093/molbev/msy096

Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research 47 (W1): W402 – W407. doi: 10.1093/nar/gkz297

Kelley LA, Mezulis S, Yates CM et al. (2015) The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nature Protocols (10): 845 – 858. doi: 10.1038/nprot.2015.053

Liu B, Yan J, Li W et al. (2020) Mikania micrantha Genome Provides Insights Into the Molecular Mechanism of Rapid Growth. Nature Communications 11 (1). doi:


Bock KW (2016). The UDP-glycosyltransferase (UGT) Superfamily Expressed in Humans, Insects and Plants: Animal Plant Arms-Race and Co-evolution. Biochemical pharmacology 99: 11-17.

Sigrist CJA, de Castro E, Cerutti L et al. (2020) New and Continuing Developments at PROSITE. Nucleic Acids Research doi: 10.1093/nar/gks1067

Mello B (2018) Estimating Timetrees with MEGA and the TimeTree resource. Molecular Biology and Evolution 35 (9): 2334-2342.

Behroozi P, Baghizadeh A, Saei A, Kharazmi S (2017) Quantitative Analysis of Uridine Diphosphate Glycosyl-transferase UGT85C2, UGT74G1 and UGT76G1 Genes Expression in Stevia rebaudiana Under Different Irriga-tions. Russian Journal of Plant Physiology 64 (1): 67–72. doi: 10.1134/S1021443717010034

Xiang Z, Tang X, Liu W, Song C (2019) A Comparative Morphological and Transcriptomic Study on Autotetra-ploid Stevia rebaudiana (Bertoni) and Its Diploid. Plant Physiology and Biochemistry 143 (June): 154–164. doi: 10.1016/j.plaphy.2019.09.003.

Scaglione D, Reyes-chinwo S, Acquadro A et al. (2016) The Genome Sequence of The Outbreeding Globe Arti-choke Constructed De Novo Incorporating a Phase-Aware Low-Pass Sequencing Strategy of F1 Progeny. Nature Publishing Group (August 2015): 1–17. doi: 10.1038/srep19427

Shen Q, Zhang L, Liao Z et al. (2018) The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis: 1–13. doi: 10.1016/j.molp.2018.03.015

Malenica N, Mccann J, Mlinarec J et al. (2019) The Repetitive DNA Composition in the Natural Pesticide Producer Tanacetum cinerariifolium: Interindividual Varia-tion of Subtelomeric Tandem Repeats 10 (May): 1–14. doi: 10.3389/fpls.2019.00613

Maghuly F, Vollmann J, Laimer M (2015). Biotechnology of Euphorbiaceae (Jatropha curcas, Manihot esculenta, Ricinus communis). In Applied Plant Genomics and Biotechnology. doi: 10.1016/B978-0-08-100068-7.00006-9

Ramalho SD, Pinto MEF, Ferreira D, Bolzani VS (2018) Biologically Active Orbitides from the Euphorbiaceae Family. Planta Medica 84 (9–10): 558–567. doi: 10.1055/s-0043-122604

McCallum EJ, Anjanappa RB, Gruissem W (2017) Tack-ling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biol-ogy 38: 50–58. doi: 10.1016/j.pbi.2017.04.008

Dickinson TA, Lo E, Talent N (2007) Polyploidy, Reproductive Biology, and Rosaceae: Understanding evolu-tion and making classifications. Plant Systematics and Evolution 266 (1–2): 59–78. doi: 10.1007/s00606-007-0541-2

Usenik V, FabÄiÄ J, Å tampar F (2008) Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus avium L.). Food Chemistry 107 (1): 185–192. doi: 10.1016/j.foodchem.2007.08.004.

Rydzewski J, Jakubowski R, Nowak W (2015) Communication: Entropic Measure to Prevent Energy Over-Minimization in Molecular Dynamics Simulations. Journal of Chemical Physics 143 (17). doi: 10.1063/1.4935370