In silico characterization of UGT74G1 protein in Stevia rebaudiana Bertoni Accession MS007

Nurul Hidayah Samsulrizal

Abstract


Stevia rebaudiana is being promoted as an alternative sweetener in particular for diabetic and obese patients due to its low-calorie property. The steady demand in the market for high-quality stevia extracts presents a challenge for enhanced production of steviol glycosides that are safe for human consumption. This study characterized the structure and content of gene involved in the production of UGT74G1 protein for S. rebaudiana accession MS007 through in silico analysis using transcriptome dataset of stevia MS007.  Homologous search using BLASTp show high similarity to Q6VAA6 RecName: Full=UDP-glycosyltransferase 74G1 (S. rebaudiana) as the top hit sequences. InterPro family and domain protein motif search revealed the presence and entry of IPR002213 and IPR035595. The construction of the phylogenetic tree was done by selecting 19 out of 102 protein sequences from BLASTp. The phylogenetic analysis showed the same protein family which is Asteraceae. ProtParam Ex-Pasy, PSIPRED and Phyre2 computed the primary, secondary, and tertiary structures for UGT74G1 protein. The UGT74G1 predicted tertiary structure scored 100.0% confidence by the single highest scoring template and coverage of 96%. The model has dimensions (Å) of X: 57.609, Y: 70.386, and Z: 58.351. Outcomes of this research will help to enhance the understanding of UDP-glycosyltransferase 74G1 (S. rebaudiana MS007) characteristic and enhance target identification processes to improve understanding of protein-protein interaction in S. rebaudiana MS007.

Full Text:

PDF

References


Ashwell M (2015) Stevia, Nature's Zero-Calorie Sustainable Sweetener: A New Player in the Fight Against Obesity. Nutrition today, 50(3): 129–134. doi:10.1097/NT.0000000000000094

PureCircle Stevia Institute (2019) Where Does Stevia Come From? https://www.purecirclesteviainstitute.com/resources/infographics/stevia-facts/where-does-stevia-come-from/. Accessed date: October 2019

Razali A, Samsulrizal NH, Zainuddin Z (2020) Identification of genes involved in flowering in stevia rebaudiana using expressed sequence tags (ESTs). Asia-Pacific Journal of Molecular Biology and Biotechnology 28(2): 105–112. ISSN 0128-7451 E-ISSN 2672-7277

Aranda-González, I., Betancur-Ancona, D., Chel-Guerrero, L., & Moguel-Ordóñez, Y. (2017). Effect of different drying methods on the composition of steviol glycosides in Stevia rebaudiana Bertoni leaves. International Agrophysics, 31(1).

Samsulrizal NH, Zainuddin Z, Noh AL, Sundram TC (2019) A Review of Approaches in Steviol Glycosides Synthesis. International Journal of Life Sciences and Biotechnology 2(3): 145–157. E-ISSN 2651-4621

Osman HS, Osman M, Zainuddin Z (2018) Genetic variabilities of Stevia rebaudiana Bertoni cultivated in Malaysia as revealed by morphological, chemical and molecular characterisations. Agrivita, 40(2): 267-283. doi: I: 10.17503/agrivita.v40i2.1365

Pang, M. D., Goossens, G. H., & Blaak, E. E. (2020). The impact of artificial sweeteners on body weight control and glucose homeostasis. Frontiers in Nutrition, 7.

Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R, Brandle J (2005) Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant Journal 41(1): 56–67. doi:10.1111/j.1365-313X. 2004.02275.x

Samsulrizal NH, Khadzran KS, Shaarani SH, Noh AL, Sundram TC, Naim MA, Zainuddin Z (2020) De novo transcriptome dataset of Stevia rebaudiana accession MS007. Data in Brief, 28 (104811). doi.org/10.1016/j.dib.2019.104811.

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal, Nucleic Acids Res, 40(W1): W597-W603. doi: 10.1093/nar/gks400

NCBI Resource Coordinators (2018) Database resources of the National Center for Biotechnology Information. Nucleic acids research, 46(D1): D8–D13. doi: 10.1093/nar/gkx1095

Blum M, Chang H, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, RichardsonL, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD (2020) The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, Nov 2020. doi: 10.1093/nar/gkaa977

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2020) Pfam: The protein families database in 2021. Nucleic Acids Research. doi: 10.1093/nar/gkaa913

Letunic I, Khedkar S, Bork P (2020) SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49 (D1): D458-D460. doi: 10.1093/nar/gkaa937

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M.R., Appel R.D., Bairoch A (2005) Protein Identification and Analysis Tools on the ExPASy Server;

(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press: 571-607. Accessed date: July 2020

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research. Jul; 47 (W1) : W636-W641. doi: 10.1093/nar/gkz268.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. doi:10.1093/molbev/msy096

Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research. doi: 10.1093/nar/gkz297

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols (10): 845 – 858. doi: 10.1038/nprot.2015.053

Liu B, Yan J, Li W, Yin L, Li P, Yu H, Xing L, Cai M, Wang H, Zhao M, Zheng J, Sun F, Wang Z, Jiang Z, Ou Q, Li S, Qu L, Zhang Q, Zheng Y, Qiao X, Xi Y, Zhang Y, Jiang F, Huang C, Liu C, Ren Y, Wang S, Liu H, Guo J, Wang H, Dong H, Peng C, Qian W, Fan W, Wan F (2020) Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nature Communications 11(1). doi: 10.1038/s41467-019-13926-4

Bock, K. W. (2016). The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal⿿ plant arms-race and co-evolution. Biochemical pharmacology, 99, 11-17.

Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2020) New and continuing developments at PROSITE. Nucleic Acids Res. 2012. doi: 10.1093/nar/gks1067

Mello, B. (2018). Estimating timetrees with MEGA and the TimeTree resource. Molecular Biology and Evolution, 35(9), 2334-2342.

Behroozi P, Baghizadeh A, Saei A, Kharazmi S (2017) Quantitative analysis of uridine diphosphate glycosyltransferase UGT85C2, UGT74G1 and UGT76G1 genes expression in Stevia rebaudiana under different irrigations. Russian Journal of Plant Physiology 64(1): 67–72. doi: 10.1134/S1021443717010034

Xiang Zeng-xu, Tang Xing-li, Liu Wei-hu, Song Chang-nan (2019) A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. Plant Physiology and Biochemistry 143(June): 154–164. doi: 10.1016/j.plaphy.2019.09.003.

Scaglione D, Reyes-chin-wo S, Acquadro A, Froenicke L, Portis E, Beitel C, Tirone M, Mauro R, Lo A, Mauromicale G, Faccioli P, Cattivelli L, Rieseberg L (2016) The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F 1 progeny. Nature Publishing Group (August 2015): 1–17. doi: 10.1038/srep19427

Shen Q, Zhang L, Liao Z, Wang S, Yan T, Shi P, Liu M, Fu X, Pan Q, Wang Y, Lv Z, Lu X, Zhang F, Jiang W, Ma Y, Chen M, Hao X, Li L, Tang Y, Lv G, Zhou Y, Sun X, Brodelius PE, Rose JKC, Tang K (2018) The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis: 1–13. doi: 10.1016/j.molp.2018.03.015

Malenica N, Mccann J, Mlinarec J, Skuhala A, Jurkovi A, Weiss-schneeweiss H, Bohanec B, Besendorfer V, Weiss-schneeweiss H (2019) The Repetitive DNA Composition in the Natural Pesticide Producer Tanacetum cinerariifolium: Interindividual Variation of Subtelomeric Tandem Repeats 10(May): 1–14. doi: 10.3389/fpls.2019.00613

Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: Understanding evolution and making classifications. Plant Systematics and Evolution 266(1–2): 59–78. doi: 10.1007/s00606-007-0541-2

Usenik V, Fabčič J, Štampar F (2008) Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chemistry 107(1): 185–192. doi: 10.1016/j.foodchem.2007.08.004.

Rydzewski J, Jakubowski R, Nowak W (2015) Communication: Entropic measure to prevent energy over-minimization in molecular dynamics simulations. Journal of Chemical Physics 143(17). doi: 10.1063/1.4935370.




Copyright (c) 2021 Nurul Hidayah Samsulrizal