Post-Covid-19 Pandemic Awareness on The Use of Micro- and Nano Plastic and Efforts into Their Degradation - A Mini Review

Ekwan Nofa Wiratno, Amira Azawani Mohd Rozdhl, Nafizatun Eliana Ali Hanafi, Rabiatul Alia Redzuan, Fahrul Zaman Huyop

Abstract


Micro- and nanoplastic pollution possess a global threat and cause a future problem and needs greater attention. Its pollution is also exacerbated recently by the use of abundance of plastic polymers in efforts to prevent and handle COVID-19 pandemic at the global scale. This review covered the major concerns about the characteristic, effect and bioremediation of micro- and nanoplastics of post COVID-19. Based on size, microplastic is described as debris particles smaller than 5 mm whereas, nanoplastic is referred to any particles smaller than 100 nm. Micro- and nanoplastic are easily ingested by many aquatic organisms at different trophic levels. This ingestion caused negative health impacts to all living organisms. Microplastic direct effect on living organism for example mechanical injury, false satiation, declined growth, promoted immune response, energy loss, disrupted enzyme activity and production, decreased fecundity, production of oxidative stress, and mortality. Nanoplastic could enter the circulatory system and caused negative effects on the cellular and molecular levels. Bioremediation of microplastic by magnoliophyta, bacteria, fungus and algae on several polymer forms was previously reported, however, not many on nanoplastic biodegradation. Therefore, current review will focus on the characteristics, effect and bioremediation effort of micro- and nanoplastic.


Keywords


biodegradation, COVID-19, microplastic, nanoplastic, pollution

Full Text:

PDF

References


Monteiro, R. C. P., Ivar do Sul, J. A., & Costa, M. F. (2018). Plastic pollution in islands of the Atlantic Ocean. Environmental Pollution, 238, 103–110. https://doi.org/10.1016/j.envpol.2018.01.096

Plastics Europe (2013). “Plastics – the facts 2013” (PlasticsEurope, Brussels, Belgium, 2013); www.plasticseurope.org/Document/plastics-the-facts-2013.aspx?FolID=2

Plastics Europe (2017). Plastic - the Facts 2017. http://www.Plasticseurope.org/application/files/5717/1717/4180/Plastics the facts 2017 FINAL for website one page.pdf

Wang, Q., & Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment – A case study of China. Science of the Total Environment, 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915

Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 728, 138878. https://doi.org/10.1016/j.scitotenv.2020.138878

Dantas, G., Siciliano, B., França, B. B., da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of the Total Environment, 729, 139085. https://doi.org/10.1016/j.scitotenv.2020.139085

Nakada, L. Y. K., & Urban, R. C. (2020). COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment, 730, 139087. https://doi.org/10.1016/j.scitotenv.2020.139087

WHO (2020). Shortage of Personal Protective Equipment Endangering Health Workers Worldwide. Newsroom, March, 3, 2020.

Bermingham, F., & Tan, S.-L. (2020). Economy / Global Economy Coronavirus: China’ s mask-making juggernaut cranks into gear, sparking fears of over-reliance on world’ s workshop. South China Morning Post. https://www.scmp.com/economy/global-economy/article/3074821/coronavirus-chinas-mask-making-juggernaut-cranks-gear

Prata J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID-19 Pandmic Repercussions on the Use and Manaement of Plastics. Environmental Science and Technology, 54(13), 7760–7765. https://doi.org/10.1021/acs.est.0c02178

Xinhua. (2020). China Focus: Mask makers go all out in fight against novel coronavirus. Xinhuanet. http://www.xinhuanet.com/english/2020-02/06/c_138760527.htm

METI. (2020). Current Status of Production and Supply of Face Masks, Antiseptics and Toilet Paper / METI Ministry of Economy, Trade and Industry. https://www.meti.go.jp/english/covid-19/mask.html

Klemeš, J. J., Fan, Y. Van, Tan, R. R., & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127(April). https://doi.org/10.1016/j.rser.2020.109883

Akber, S. A., Khalil, A. B., & Arslan, M. (2020). Extensive use of face masks during COVID-19 pandemic: (micro-)plastic pollution and potential health concerns in the Arabian Peninsula. Saudi Journal of Biological Sciences, 27(12), 3181–3186. https://doi.org/10.1016/j.sjbs.2020.09.054

Bengali, S. (2020). The COVID-19 pandemic is unleashing a tidal wave of plastic waste. The Los Angeles Times, 1–16. https://www.latimes.com/world-nation/story/2020-06-13/coronavirus-pandemic-plastic-waste-recycling

Patrício, A. L. S., Prata, J. C., Walker, T. R., Duarte, A. C., Ouyang, W., Barcelò, D., & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical engineering journal (Lausanne, Switzerland: 1996), 405, 126683. https://doi.org/10.1016/j.cej.2020.126683

Rhodes, C. J. (2018). Plastic pollution and potential solutions. Science Progress, 101(3), 207–260.https://doi.org/10.3184/003685018X15294876706211

Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied microbiology and biotechnology, 102(18), 7669–7678. https://doi.org/10.1007/s00253-018-9195-y

Thomson, R. C., Moore, C. J., Saal, F. S. V., & Swan, S.H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053

Bagaev, A., Mizyuk, A., Khatmullina, L., Isachenko, I., & Chubarenko, I. (2017). Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion. Science of the Total Environment, 599–600, 560–571. https://doi.org/10.1016/j.scitotenv.2017.04.185

Li, X., Mei, Q., Chen, L., Zhang, H., Dong, B., Dai, X., He, C., & Zhou, J. (2019). Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research, 157, 228–237. https://doi.org/10.1016/j.watres.2019.03.069

Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A., & Longstaffe, F. J. (2016). Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin, 110(1), 383–395. https://doi.org/10.1016/j.marpolbul.2016.06.037

Graham, E. R., & Thompson, J. T. (2009). Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Experimental Marine Biology and Ecology, 368(1), 22–29. https://doi.org/10.1016/j.jembe.2008.09.007

Barnes, D. K. A. (2002). Biodiversity: invasions by marine life on plastic debris. Nature, 416(6883), 808–809.

Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842–852.

Ryan, P. G., Moore, C. J., Franeker, J. A. van, & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1999–2012.

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin, 62(10), 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030

Gigault, J., Halle, A. ter, Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. https://doi.org/10.1016/j.envpol.2018.01.024

Halle, A. Ter, Jeanneau, L., Martignac, M., Jardé, E., Pedrono, B., Brach, L., & Gigault, J. (2017). Nanoplastic in the North Atlantic subtropical gyre. Environmental Science & Technology, 51, 13689–13697.

Gigault, J., Pedrono, B., Maxit, B., & Halle, A. Ter. (2016). Marine plastic litter: the unanalyzed nano-fraction. Environmental Science: Nano, 2, 346–350.

Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265–268. https://doi.org/10.1016/j.chemosphere.2015.11.078

Ekvall, M. T., Lundqvist, M., Kelpsiene, E., Šileikis, E., Gunnarsson, S. B., & Cedervall, T. (2019). Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale Advances, 1(3), 1055–1061. https://doi.org/10.1039/c8na00210j

Wright, S. L., ThoMicroplasticson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental Pollution (Barking, Essex: 1987), 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031

Imhof, H. K., Ivleva, N. P., Schmid, J., Niessner, R., & Laforsch, C. (2013). Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology, 23(19), R867–R868. https://doi.org/10.1016/j.cub.2013.09.001

Cole, M., Lindeque, P., Fileman, E., Halsband, C., & Galloway, T. S. (2015). The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus helgolandicus. Environmental Science & Technology, 49(2), 1130–1137.

Manfra, L., Rotini, A., Bergami, E., Grassi, G., Faleri, C., & Corsi, I. (2017). Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicology and Environmental Safety, 145(May), 557–563. https://doi.org/10.1016/j.ecoenv.2017.07.068

Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. L. (2018). Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environmental Pollution, 236, 425–431. https://doi.org/10.1016/j.envpol.2018.01.094

Jeong, C. B., Kang, H. M., Lee, M. C., Kim, D. H., Han, J., Hwang, D. S., Souissi, S., Lee, S. J., Shin, K. H., Park, H. G., & Lee, J. S. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Scientific Reports, 7(January), 1–11. https://doi.org/10.1038/srep41323

Chae, Y., Kim, D., Kim, S. W., & An, Y. J. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18849-y

Redono-Hasselerharm, P. E., Falahudin, D., Peeters, E T. H. M., & Koelmans, A. A. (2018). Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environmental Science and Technology, 52(4), 2278–2286. https://doi.org/10.1021/acs.est.7b05367

Blarer, P., & Burkhardt-Holm, P. (2016). Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environmental Science and Pollution Research Volume, 23, 23522–23532.

Au, S. Y., Bruce, T. F., Bridges, W. C., & Klaine, S. J. (2015). Responses of Hyalella azteca to acute and chronic microplastic exposures. Environmental Toxicology, 34(11), 2564–2572.

Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-64464-9

Yong, C. Q. Y., Valiyaveetill, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in Mammalian systems. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051509

Pedà, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., Perdichizzi, A., Romeo, T., & Maricchiolo, G. (2016). Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212, 251–256. https://doi.org/10.1016/j.envpol.2016.01.083

Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A., & Hassanaghaei, M. (2018). Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere, 205, 80–87. https://doi.org/10.1016/j.chemosphere.2018.04.07651. Ashton, K., Holmes, L., & Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60(11), 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014

Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054–4060.

Moos, N. von, Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure. Environmental Science & Technology, 46(20), 11327–11335.

Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3, 1–7. https://doi.org/10.1038/srep03263

Venema, W. J., Spaink, H. P., Brun, N. R., & Vijver, M. G. (2017). Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae. Aquatic Toxicology, 190(June), 112–120. https://doi.org/10.1016/j.aquatox.2017.06.014

Ashton, K., Holmes, L., & Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60(11), 2050–2055. https://doi.org/10.1016/j.marpolbul.2010.07.014

Fries, E., & Zarfl, C. (2012). Sorption of polycyclic aromatic hydrocarbons (PAHs) to low- and high-density polyethylene (PE). Environmental Science and Pollution Research, 19, 1296–1304.

Della, T. C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K., & Corsi, I. (2014). Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environmental Science & Technology, 48(20), 12302–12311.

Koelmans, A. A., Besseling, E., Wegner†, A., & Foekema, E. M. (2013). Plastic as a Carrier of POPs to Aquatic Organisms: A Model Analysis. Environmental Science & Technology, 47(14), 7812–7820.

Zettler, E. R., Mincer, T. J., & Linda A. Amaral-Zettler. (2013). Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 47(13), 7137–7146.

Bhattacharjee, S., Ershov, D., Islam, M. A., Kämpfer, A. M., Maslowska, K. A., Van Der Gucht, J., Alink, G. M., Marcelis, A. T. M., Zuilhof, H., & Rietjens, I. M. C. M. (2014). Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Advances, 4(37), 19321–19330. https://doi.org/10.1039/c3ra46869k

Canesi, L., Ciacci, C., Fabbri, R., Balbi, T., Salis, A., Damonte, G., Cortese, K., Caratto, V., Monopoli, M. P., Dawson, K., Bergami, E., & Corsi, I. (2016). Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environmental Research, 150, 73–81. https://doi.org/10.1016/j.envres.2016.05.045

Brandts, I., Teles, M., Gonçalves, A. P., Barreto, A., Franco-Martinez, L., Tvarijonaviciute, A., Martins, M. A., Soares, A. M. V. M., Tort, L., & Oliveira, M. (2018). Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Science of the Total Environment, 643, 775–784. https://doi.org/10.1016/j.scitotenv.2018.06.257

Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., & Hollert, H. (2017). Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Science of the Total Environment, 609, 1312–1321. https://doi.org/10.1016/j.scitotenv.2017.07.144

Liu, Z., Huang, Y., Jiao, Y., Chen, Q., Wu, D., Yu, P., Li, Y., Cai, M., & Zhao, Y. (2020). Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex. Aquatic Toxicology, 220(January), 105420. https://doi.org/10.1016/j.aquatox.2020.105420

Besseling, E., Wang, B., Lürling, M., & Koelmans, A. A. (2014). Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environmental Science & Technology, 48(20), 12336–12343.

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A. D., Winther-Nielsen, M., & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(12), 1–9. https://doi.org/10.1016/0163-8343(83)90040-3

Li, Y., Liu, Z., Li, M., Jiang, Q., Wu, D., Huang, Y., Jiao, Y., Zhang, M., & Zhao, Y. (2020). Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. Journal of Hazardous Materials, 398(May), 122990. https://doi.org/10.1016/j.jhazmat.2020.122990

Li, Z., Feng, C., Wu, Y., & Guo, X. (2020). Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. Journal of Hazardous Materials, 392(December 2019), 122418. https://doi.org/10.1016/j.jhazmat.2020.122418

Dussud, C., & Ghiglione, J.-F. (2014). Bacterial degradation of synthetic plastics. In CIESM Workshop Monograph (p. 49e54).

Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x

Sharma, M., Sharma, P., Sharma, A., & Chandra, S. (2015). Initial depletion and subsequent recovery of spermatogonia of the mouse after 20 r of gamma rays and 100, 300, and 600 r of x-rays. CIBTech Journal of Microbiology, 4(1), 85–89. htps://doi.org/10.2307/3570749

Nuzzo, A., Puccio, S., Martina, C., Pietrangeli, B., Martinez, G. A., Bertin, L., Mancini, M., Fava, F., & Zanaroli, G. (2020). Containment of a genetically modified microorganism by an activated ludge system. New Biotechnology, 55(Octobe 2019), 58–64. https://doi.org/10.1016/j.nbt.2019.10.001

Gutow, L., Eckerlebe, A., Giménez, L., & Saborowski, R. (2016). Experimental Evaluation of Seaweeds as a Vector for Microplastics into Marine Food Webs. Environmental Science & Technology, 50(2), 915–923.

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavas, I., Ünay, A., Abdel-Daim, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability (Switzerland), 12(5), 1–33. https://doi.org/10.3390/su12051927

Avellan, A., Simonin, M., McGivney, E., Bossa, N., Spielman-Sun, E., Rocca, J. D., Bernhardt, E. S., Geitner, N. K., Unrine, J. M., Wiesner, M. R., & Lowry, G. V. (2018). Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nature Nanotechnology, 13(11), 1072–1077. https://doi.org/10.1038/s41565-018-0231-y

Orr, I. G., Hadar, Y., & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65(1), 97–104. https://doi.org/10.1007/s00253-004-1584-8

Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2), 323–327. https://doi.org/https://doi.org/10.1016/S0141-3910(01)00027-1

Pometto, A. L., Lee, B., & Johnson, K. E. (1992). Productin of an extracellular polyethylene-degrading nzyme(s) by Streptomyces species. Applied nd Environmental Microbiology, 58(2), 731–733. https://doi.org/10.1128/aem.58.2.731-733.1992

Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 20(7), 4339–4355. https://doi.org/10.1007/s11356-013-1706-x

Oda, Y., Oida, N., Urakami, T., & Tonomura, K. (1997). olycaprolactone depolymerase producedby the bacterium Alcaligenes faecalis. FEMS Microbiology Letters, 152(2), 339–343. https://doi.org/10.1016/S0378-1097(97)00222-X

Kim, D. Y., & Rhee, Y. H. (2003). Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 61(4), 300–308. https://doi.org/10.1007/s00253-002-1205-3

Tomita, K., Kuroki, Y., & Nagai, K. (1999). Isolation o thermophiles degrading poly(l-lactic acid). Journal of Bioscience and Bioenginering, 87(6), 752–755. https://doi.org/https://doi.org/10.1016/S1389-1723(99)80148-0

Nakajia-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F., & Nakahara, T. (1999). Microbial degradation of polyurethane, polyester olyurethanes and polyether polyurethaes. Applied Microbiology and Biotechnlogy, 51(2), 134–140. https://doi.org/10.1007/s002530051373

Howard, G. T., Ruiz, C., & Hilliard, N. P. (1999). Growth of Pseudomonas chlororaphis on apolyester–polyurethane and the purification andcharacterization of a polyurethanase–esterase enzyme. International Biodeterioration & Biodegradation, 43(1), 7–12. https://doi.org/https://doi.org/10.1016/S0964-8305(98)00057-2

Danko, A. S., Luo, M., Bagwell, C. E., Brigmon, R. L., & Freedman, D. L. (2004). Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Applied and Environmental Microbiology, 70(10), 6092–6097. https://doi.org/10.1128/AEM.70.10.6092-6097.2004

Mor, R., & Sivan, A. (2008). Biofilm formation and partial biodegradation of polystyrene by the actinomcete Rhodococcus ruber. Biodegraation, 19(6), 851–858. https://doiorg/10.1007/s10532-008-9188-0

Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution (Barking, Essex: 1987), 231(Pt 2), 1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043

Gong, J., Kong, T., Li, Y., Li, Q., Li, Z., & Zhang, J. (2018). Biodegradation of microplastic derived from poly(ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers, 10(12). https://doi.org/10.3390/polym10121326

Liu, J., Xu, G., Dong, W., Xu, N., Xin, F., Ma, J., Fang, Y., Zhou, J., & Jiang, M. (2018). Biodegradation of diethyl terephthalate and polyethylene terephthalate by a novel identified degrader Delftia sp. WL-3 and its proposed metabolic pathway. Letters in Applied Microbiology, 67(3), 254–261. https://doi.org/10.1111/lam.13014

Bianco, A., Sordello, F., Ehn, M., Vione, D., & Passananti, M. (2020). Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Science of the Total Environment, 742, 140413. https://doi.org/10.1016/j.scitotenv.2020.140413

Zurier, H. S., & Goddard, J. M. (2021). Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science, 37, 37–44. https://doi.org/10.1016/j.cofs.2020.09.001

Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704, 1–8. https://doi.org/10.1016/j.scitotenv.2019.135931




DOI: http://dx.doi.org/10.11594/jtls.11.02.12

Copyright (c) 2021 Ekwan Nofa Wiratno, Fahrul Zaman Huyop