Predominant Bacterial Diversity in Rheumatoid Arthritis Rat After Treated with Caprine CSN1S2 Protein

Authors

  • Eko Suyanto 1) Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Veteran, Malang 65145, East Java, Indonesia 2) Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Veteran, Malang 65145, East Java, Indonesia http://orcid.org/0000-0002-0748-4242
  • Fatchiyah Fatchiyah 1) Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Veteran, Malang 65145, East Java, Indonesia 2) Research Center of Smart Molecule of Natural Genetics Resource, Brawijaya University, Veteran, Malang 65145, East Java, Indonesia http://orcid.org/0000-0001-6241-9665

DOI:

https://doi.org/10.11594/jtls.11.02.01

Keywords:

Dysbiosis, Caprine, CSN1S2, Enterococcus, Bacillus coagulans, Rheumatoid

Abstract

Introduction: Rheumatoid arthritis (RA) is an autoimmune and systemic inflammatory disease influenced by microbial abnormalities (dysbiosis) in the intestinal that affect changes in metabolism and immune system disorders. This study aimed to investigate the predominant intestinal microbiota in complete Freund’s Adjuvant-induced rheumatoid arthritis rats after treated with caprine milk CSN1S2 protein through fecal analysis based on PCR-DGGE and to construct the phylogenetic tree of bacteria as the evolutionary relationship. Method: The experimental animals were divided into 6 groups with 2 types of rat model, namely control rat (C group, CM group, and CY group) and RA rat (RA group, RAM group, and RAY group). Predominant cultivable microbiota was obtained by direct culture and analyzed using PCR-DGGE with some specific primers. The DNA sequences were analyzed and aligned using bioinformatics software to construct the phylogenetic tree. Results: We found that Lactobacillus group significantly increased in the control rat model and the predominant intestinal bacteria in RA rats were Enterococcus group (Enterococcus faecium and Enterococcus faecalis). Conclusions: The caprine milk CSN1S2 protein influences the composition of microbiota in RA rats with the emergence of predominant bacteria that are considered species of the Bacillus group, closely related to Bacillus coagulans, which can be promoted the growth of B. coagulans to suppress pathogenic bacteria in the development of RA disease.

References

Gibofsky A (2014) Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: A Synopsis. The American journal of managed care 20 (7 Suppl): S128—35.

Yu MB, Langridge WHR (2017) The function of myeloid dendritic cells in rheumatoid arthritis. Rheumatology International 37 (7): 1043–1051. doi: 10.1007/s00296-017-3671-z.

Bernard NJ (2018) Synergy of environmental and genetic risk in RA. Nature Reviews Rheumatology 14 (6): 319. doi: 10.1038/s41584-018-0015-7.

van Steenbergen HW, da Silva JAP, Huizinga TWJ, van der Helm-van Mil AHM (2018) Preventing progression from arthralgia to arthritis: targeting the right patients. Nature Reviews Rheumatology 14 (1): 32–41. doi: 10.1038/nrrheum.2017.185.

Okada Y, Wu D, Trynka G et al. (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506 (7488): 376–381. doi: 10.1038/nature12873.

Firestein GS, McInnes IB (2017) Immunopathogenesis of Rheumatoid Arthritis. Immunity 46 (2): 183–196. doi: 10.1016/j.immuni.2017.02.006.

McInnes IB, Schett G (2011) The Pathogenesis of Rheumatoid Arthritis. New England Journal of Medicine 365 (23): 2205–2219. doi: 10.1056/NEJMra1004965.

Scher JU, Ubeda C, Equinda M et al. (2012) Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis and Rheumatism 64 (10): 3083–3094. doi: 10.1002/art.34539.

Dietert R, Dietert J (2015) The Microbiome and Sustainable Healthcare. Healthcare 3 (1): 100–129. doi: 10.3390/healthcare3010100.

Lamichhane S, Sen P, Dickens AM et al. (2018) Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 149 (April): 3–12. doi: 10.1016/j.ymeth.2018.04.029.

Lynch S V, Pedersen O (2016) The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine 375 (24): 2369–2379. doi: 10.1056/NEJMra1600266.

Maeda Y, Takeda K (2017) Role of Gut Microbiota in Rheumatoid Arthritis. Journal of Clinical Medicine 6 (6): 60. doi: 10.3390/jcm6060060.

De Medina FS, Daddaoua A, Requena P et al. (2010) New insights into the immunological effects of food bioactive peptides in animal models of intestinal inflammation. Proceedings of the Nutrition Society 69 (3): 454–462. doi: 10.1017/S0029665110001783.

Fatchiyah F, Setiawan B (2015) ScienceDirect The anti-osteoporosis effects of CSN1S2 protein of goat milk and yoghurt on a complete Freund ’ s adjuvant-induced rheumatoid arthritis model in rats. Biomarkers and Genomic Medicine 7 (4): 139–146. doi: 10.1016/j.bgm.2015.10.001.

Sharma S, Singh R, Rana S (2011) Bioactive peptides: A review. International Journal Bioautomation 15 (4): 223–250. doi: 10.1093/fqs/fyx006.

Chotimah C, Ciptadi G, Setiawan B, Fatchiyah F (2015) CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure. Asian Pacific Journal of Tropical Disease 5 (3): 219–223. doi: 10.1016/S2222-1808(14)60657-5.

Triprisila LF, Suharjono S, Christianto A, Fatchiyah F (2016) The comparing of antimicrobial activity of CSN1S2 protein of fresh milk and yoghurt goat breed ethawah inhibited the pathogenic bacteria. Mater Sociomed 28 (4): 244–248. doi: 10.5455/msm.2016.28.244-248.

Rohmah RN, Widjajanto E, Fatchiyah F (2015) Protective effect of CSN1S2 protein of goat milk on ileum microstructure and inflammation in rat-CFA-induced rheumatoid arthritis. Asian Pac J Trop Dis 5 (7): 564–568. doi: 10.1016/S2222-1808(15)60837-4.

Budiarti IK, Padaga M, Fatchiyah F (2013) Nutritional composition and protein profile of goat yogurt PE with double culture between Streptococcus thermophilus and Lactobacillus species. Cukurova Medical Journal 38 681–686.

Hernández-Ledesma B, Del Mar Contreras M, Recio I (2011) Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science 165 (1): 23–35. doi: 10.1016/j.cis.2010.11.001.

Yusuf F, Ilyas S, Damanik HA, Fatchiyah F (2016) Microbiota composition, HSP70 and caspase-3 expression as marker for colorectal cancer patients in Aceh, Indonesia. Acta Medica Indonesiana 48 (4): 289–299.

Vanhoutte T, Huys G, Brandt E De, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiology Ecology 48 437–446. doi: 10.1016/j.femsec.2004.03.001.

Maukonen J, Matto J, Satokari R et al. (2006) PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides-Eubacterium rectale group in the human intestinal microbiota. FEMS Microbiology Ecology 58 517–528. doi: 10.1111/j.1574-6941.2006.00179.x.

Ji K, Jang NY, Kim YT (2015) Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. Journal of Microbiology and Biotechnology 25 (9): 1568–1577. doi: 10.4014/jmb.1501.01077.

Hong SW, Kim IS, Lee JS, Chung KS (2011) Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community structure from the intestinal tracts of earthworms (eisenia fetida). Journal of Microbiology and Biotechnology 21 (9): 885–892. doi: 10.4014/jmb.1009.09041.

Xiong X, Hu Y, Yan N et al. (2014) PCR-DGGE analysis of the microbial communities in three different chinese “Baiyunbian†liquor fermentation starters. Journal of Microbiology and Biotechnology 24 (8): 1088–1095. doi: 10.4014/jmb.1401.01043.

Hong SW, Choi YJ, Lee HW et al. (2016) Microbial community structure of Korean cabbage kimchi and ingredients with denaturing gradient gel electrophoresis. Journal of Microbiology and Biotechnology 26 (6): 1057–1062. doi: 10.4014/jmb.1512.12035.

Vitetta L, Coulson S, Linnane AW, Butt H (2013) The gastrointestinal microbiome and musculoskeletal diseases: A beneficial role for probiotics and prebiotics. Pathogens 2 (4): 606–626. doi: 10.3390/pathogens2040606.

Merlich A, Galkin M, Choiset Y et al. (2019) Characterization of the bacteriocin produced by Enterococcus italicus ONU547 isolated from Thai fermented cabbage. Folia Microbiologica 64 (4): 535–545. doi: 10.1007/s12223-019-00677-4.

Javed I, Ahmed S, Ali MI et al. (2010) Bacteriocinogenic potential of newly isolated strains of Enterococcus faecium and Enterococcus faecalis from dairy products of Pakistan. Journal of Microbiology and Biotechnology 20 (1): 153–160. doi: 10.4014/jmb.0904.04024.

Bagci U, Ozmen Togay S, Temiz A, Ay M (2019) Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiologica 64 (6): 735–750. doi: 10.1007/s12223-019-00687-2.

Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. International Journal of Food Microbiology 145 (2–3): 390–394. doi: 10.1016/j.ijfoodmicro.2010.12.029.

Lee JH, Shin D, Lee B et al. (2017) Genetic diversity and antibiotic resistance of enterococcus faecalis isolates from traditional Korean fermented soybean foods. Journal of Microbiology and Biotechnology 27 (5): 916–924. doi: 10.4014/jmb.1612.12033.

Bachtiar BM, Bachtiar EW (2017) Proinflammatory MG-63 cells response infection with Enterococcus faecalis cps2 evaluated by the expression of TLR-2, IL-1β, and iNOS mRNA. BMC Research Notes 10 (1): 1–6. doi: 10.1186/s13104-017-2740-4.

Wu HJ, Ivanov II, Darce J et al. (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32 (6): 815–827. doi: 10.1016/j.immuni.2010.06.001.

Hildebrand F, Meyer A, Eyre-Walker A (2010) Evidence of selection upon genomic GC-content in bacteria. PLoS Genetics. doi: 10.1371/journal.pgen.1001107

Tschumi A, Nai C, Auchli Y et al. (2009) Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. Journal of Biological Chemistry 284 (40): 27146–27156. doi: 10.1074/jbc.M109.022715.

Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology 14 (1): 20–32. doi: 10.1038/nrmicro3552.

Scher JU, Sczesnak A, Longman RS et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2 1–20. doi: 10.7554/elife.01202.

Wegner N, Wait R, Sroka A et al. (2010) Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid Arthritis. Arthritis and Rheumatism 62 (9): 2662–2672. doi: 10.1002/art.27552.

Lappin DF, Apatzidou D, Quirke A-M et al. (2013) Influence of periodontal disease, Porphyromonas gingivalis and cigarette smoking on systemic anti-citrullinated peptide antibody titres. Journal of Clinical Periodontology 40 (10): 907–915. doi: 10.1111/jcpe.12138.

Zhang X, Zhang D, Jia H et al. (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine 21 (8): 895–905. doi: 10.1038/nm.3914.

Cao J, Yu Z, Liu W et al. (2020) Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods 64 (October 2019): 103643. doi: 10.1016/j.jff.2019.103643.

Cutting SM (2011) Bacillus probiotics. Food Microbiology 28 (2): 214–220. doi: 10.1016/j.fm.2010.03.007.

Honda H, Gibson GR, Farmer S et al. (2011) Use of a continuous culture fermentation system to investigate the effect of GanedenBC30 (Bacillus coagulans GBI-30, 6086) supplementation on pathogen survival in the human gut microbiota. Anaerobe 17 (1): 36–42. doi: 10.1016/j.anaerobe.2010.12.006.

Sudha, M. R., Jayanthi, N., Aasin, M., Dhanashri, R. D., Anirudh T (2018) Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled studyle. Beneficial Microbes 9 (4): 563–572.

Majeed M, Natarajan S, Sivakumar A et al. (2016) Evaluation of anti-diarrhoeal activity of Bacillus coagulans MTCC 5856 and its effect on gastrointestinal motility in Wistar rats. International Journal of Pharma and Bio Sciences 7 (1): P311–P316.

Keller D, Verbruggen S, Cash H et al. (2019) Spores of bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial Microbes 10 (1): 77–87. doi: 10.3920/BM2018.0037.

Nyangale EP, Farmer S, Keller D et al. (2014) Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086. Anaerobe 30 75–81. doi: 10.1016/j.anaerobe.2014.09.002.

Kimmel M, Keller D, Farmer S, Warrino DE (2010) A controlled clinical trial to evaluate the effect of GanedenBC(30) on immunological markers. Methods and findings in experimental and clinical pharmacology 32 (2): 129—132. doi: 10.1358/mf.2010.32.2.1423881.

Abhari K, Shekarforoush SS, Hosseinzadeh S et al. (2016) The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food and Nutrition Research. doi: 10.3402/fnr.v60.30876

Haldar L, Gandhi DN (2016) Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Veterinary World 9 (7): 766–772. doi: 10.14202/vetworld.2016.766-772.

Downloads

Published

2021-06-01

Issue

Section

Articles