The Dynamic of Calcium Oxalate (CaOx) in Porang Corms (Amorphophallus muelleri Blume) at Different Harvest Time

Nurul Chairiyah, Nunung Harijati, Retno Mastuti

Abstract


The research aims to observe the influence of harvesting time on the change of calcium oxalate (CaOx) content and crystal density in Porang corms. The corms were harvested at different times, i.e., (1) two weeks before the plants shed (R0-1), (2) when the plants shed (R0), and (3) two weeks after the plants shed (R0+1). CaOx was obtained using the modified extracting method. Microscopic observations were obtained from the slices of the edge and center part of porang corms. Parameter observed including CaOx content, corm weight, shape, and density of CaOx crystal. CaOx content and crystal density in corms were analyzed using One way ANOVA. If the results are significant, it will be followed by Tukey Test α 0.05. In the meantime, the relation between CaOx content and corm weight was analyzed using Correlation Test Bivariate. The results showed that CaOx content was relatively higher in porang corms, i.e., 15.98 ± 0.60g/100g. On the other hand, the increasing of CaOx content might improve corm weight. The total density of druse, styloid, and prism crystal was pretty high in corms obtained when the plants shed compared to another harvest time, i.e., 1,494 ± 286; 31,280 ± 17,406 and 6,256 ± 1,533 crystals/cm2 . Raphide crystal density, by contrast, increased in corms obtained after the plants shed, i.e.,1,656 ± 368 crystals/cm2 . Total CaOx crystal density in the edge parts of corms harvested when the plants shed was proportionately higher than in the other harvest times, i.e., 12,292 ± 4,687.89 crystals/cm2 . In contrast, CaOx crystal densities in the center parts of corms were not much different at three harvesting times. The density of druse and prism crystals was somewhat higher in the center part of corms than in the edge parts. In opposition to, the density of raphide and styloid crystals was fairly higher in the edge part of corms than it was in the center parts. However, only raphide crystal density found in the edge and center part of corms was significantly affected by harvest time from all these results.


Keywords


CaOx content, crystal density, corms, harvest time

Full Text:

PDF

References


. Chua M, Baldwin TC, Hocking TJ, Chan K (2010) Traditional Uses and Potential Health Benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology 128: 268-278. doi: 10.1016/j.jep.2010.01.021.

. Harijati N, Mastuti R, Chairiyah N, Roosdiana B, Rohmawati SA (2018) Effects of Seeding Material Age, Storage Time, and Tuber Tissue Zone on Glucomannan Content of Amorphophallus muelleri Blume. International Journal of Plant Biology 9: 34-38. https://doi.org/10.4081/pb.2018.7626.

. Nugraheni B, Cahyani IM, Herlyanti K (2014) Efek Pemberian Glukomanan Umbi Porang (Amorphophallus oncophyllus Prain Ex Hook. F.) Terhadap Kadar Kolesterol Total Darah Tikus Yang Diberi Diet Tinggi Lemak. Jurnal Ilmu Farmasi dan Farmasi Klinik 11: 32-36. http://dx.doi.org/10.31942/jiffk.v11i2.1366

. Setiawati E, Bahri S, Razak AR (2017) Ekstraksi Glukomanan dari Umbi Porang (Amorphophallus paeniifolius (Dennst.) Nicolson). Kovalen 3(3): 234-241.

. Yanuriati A, Marseno DW, Harmayani E (2017) Characteristics of Glucomannan Isolated From Fresh Tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers 156: 56-63. doi: 10.1016/j.carbpol.2016.08.080

. Fauziyah E, Diniyati D, Suyarno, Mulyati E (2013) Strategi Pengembangan Iles-iles (Amorphophallus spp.) Sebagai Hasil Hutan Bukan Kayu (HHBK) di Kabupaten Kuningan, Jawa Barat. Jurnal Penelitian Agroforestry 1(1): 55-70.

. Pusat Penelitian dan Pengembangan Porang Indonesia (2013) Budidaya dan Pengembangan Porang (Amorphophallus muelleri Blume) Sebagai Salah Satu Potensi Bahan Baku Lokal. [Dissemination]. Universitas Brawijaya, Malang.

. Sari R., Suhartati (2015) Tumbuhan Porang: Prospek Budidaya Sebagai Salah Satu Sistem Agroforestry. Buletin Eboni 12(2): 97-110. https://doi.org/10.20886/buleboni.5061

. Suroso (2019) Strategi Pengembangan Komoditi Tanaman Porang (Amorphophallus oncophyllus) di Desa Kalirejo Kecamatan Kokap Kabupaten Kulon Progo DIY. http://www.dishutbun.jogjaprov.go.id. Accessed date: April 2020.

. Chairiyah N, Harijati N, Mastuti R (2014) Pengaruh Waktu Panen Terhadap Kandungan Glukomannan pada Umbi Porang (Amorphophallus muelleri Blume) Periode Tumbuh Ketiga. Research Journal of Life Science 1(1): 37-42. https://doi.org/10.21776/ub.rjls.2014.001.01.6

. Libert B, Franceschi VR (1987) Oxalate in Crop Plants. Journal of Agricultural and Food Chemistry 35: 926-938. https://doi.org/10.1021/jf00078a019

. Savage GP, Vanhanen L, Mason SM, Ross AB (2000) Effect of Cooking on The Soluble and Insoluble Oxalate Content of Some New Zealand Foods. Journal of Food Composition and Analysis 13(3): 201-206. https://doi.org/10.1006/jfca.2000.0879

. Abu-Zanat, MMW, Al-Hassanat FM, Alawi M. Ruyle GB (2003) Oxalate and Tannins Assessment in Atriplex halimus L. and A. nummularia L. Journal of Range Management 56(4): 370-374. https://doi.org/10.2307/4004041

. Antai SP, Obong US (1992) The Effect of Fermentation on The Nutrient Status and on Some Toxic Components of Icacinia manni. Plant Foods for Human Nutrition 42(3): 219-224. https://doi.org/10.1007/BF02193929

. Cronin EH, Williams MC (1966) Principles for Managing Ranges Infested with Halogeton. Journal of Range Management 19(4): 226-227.

. Davis AM (1981) The Oxalate, Tannin, Crude Fiber, and Crude Protein Composition of Young Plants of Some Atriplex Species. Journal of Range Management 34(4): 329-331. doi:10.2307/3897862.

. Ellern SJ, Samish YB, Lachover D (1974) Salt and Oxalic Acid Content of Leaves of The Saltbush Atriplex halimus in The Northern Negev. Journal of Range Management 27(4): 267-271. doi:10.2307/3896820.

. Fujii N, Watanabe M, Watanabe Y, Shimada N (1993) Rate of Oxalate Biosynthesis from Glycolate and Ascorbic Acid in Spinach (Spinacia oleracea) Leaves. Soil Science and Plant Nutrition 39(4): 627-634. doi: 10.1080/00380768.1993.10419179

. Gul B, Weber DJ, Khan MA (2000) Effect of Salinity and Planting Density on Physiological Responses of Allenrolfea occidentalis. Western North American Naturalist 60(2): 188-197.

. Ji XM, Peng XX (2005) Oxalate Accumulation as Regulated by Nitrogen Forms and Its Relationship to Photosynthesis in Rice (Oryza sativa L.). Journal of Integrative Plant Biology 47(7): 831-838. https://doi.org/10.1111/j.1744-7909.2005.00099.x

. Jones RJ, Ford CW (1972) The Soluble Oxalate Content of Some Tropical Pasture Grasses Grown in South-East Queensland. Tropical Grasslands 6(3): 201-204.

. Kipnis T, Dabush L (1988) Oxalate Accumulation in Napier Grass and Pearl Millet×Napier Grass Interspecific Hybrids in Relation to Nitrogen Nutrition, Irrigation and Temperature. Journal of the Science of Food and Agriculture 43(3): 211-223. https://doi.org/10.1002/jsfa.2740430303

. Kozukue E, Kozukue N, Kurosaki T (1983) Organic Acid, Sugar and Amino Acid Composition of Bamboo Shoots. Journal of Food Science 48(3): 935-938. https://doi.org/10.1111/j.1365-2621.1983.tb14934.x

. Libert B, Creed C (1985) Oxalate Content of Seventy-Eight Rhubarb Cultivars and Its Relation to Some Other Characters. Journal of Horticultural Science and Biotechnology 60(2): 257-261.

. Libert B (1987) Genotypic and Non-Genetic Variation of Oxalate and Malate Content in Rhubarb (Rheum spp. L.). Journal of Horticultural Science and Biotechnology 62(4): 513-522. https://doi.org/10.1080/14620316.1987.11515815

. Marais JP, Barnabas AD, Figenschou DL (1997) Effect of Calcium Nutrition on The Formation of Calcium Oxalate in Kikuyugrass. Proceedings of the XVIII International Grassland Congress, Canada: 45.

. Noonan SC, Savage GP (1999) Oxalate Content of Foods and Its Effect on Humans. Asia Pacific Journal of Clinical Nutrition 8(1): 64-74. doi:10.1046/j.1440-6047.1999.00038.x

. Rahman MM, Niimi M, Ishii Y, Kawamura O (2006) Effects of Seasons, Variety and Botanical Fractions on Oxalate Content of Napiergrass (Pennisetum purpureum Schumach). Grassland Science 52:161-166. https://doi.org/10.1111/j.1744-697X.2006.00063.x

. Rahman MM, Yamamoto M, Niimi M, Kawamura O (2008a) Effect of Nitrogen Fertilization on Oxalate Content in Rhodesgrass, Guineagrass and Sudangrass. Asian-Australasian Journal of Animal Science 21(2): 214-219. https://doi.org/10.5713/ajas.2008.70350

. Rahman MM, Ishii Y, Niimi M, Kawamura O (2008b) Effects of Levels of Nitrogen Fertilizer on Oxalate and Some Mineral Contents in Napiergrass (Pennisetum purpureum Schumach). Grassland Science 54(3): 146-150. https://doi.org/10.1111/j.1744-697X.2008.00117.x

. Rahman MM, Ishii Y, Niimi M, Kawamura O (2008c) Effect of Salinity Stress on Dry Matter Yield and Oxalate Content in Napiergrass (Pennisetum purpureum Schumach). Asian-Australasian Journal of Animal Science 21(11): 1599-1603. doi: 10.5713/ajas.2008.80217

. Rahman MM, Ishii Y, Niimi M, Kawamura O (2009a) Change of Oxalate Form in Pot-Grown Napiergrass (Pennisetum purpureum Schumach) by Application of Calcium Hydroxide. Grassland Science 55(1): 18-22. https://doi.org/10.1111/j.1744-697X.2009.00132.x

. Rahman MM, Ishii Y, Niimi M, Kawamura O (2009b) Effect of Clipping Interval and Nitrogen Fertilization on Oxalate Content in Pot-Grown Napiergrass (Pennisetum purpureum). Tropical Grassland 43(2): 73-78.

. Rahman MM, Kawamura O (2011) Oxalate Accumulation in Forage Plants: Some Agronomic, Climatic and Genetic Aspects. Asian-Australasian Journal of Animal Science 24(3): 439-448. https://doi.org/10.5713/ajas.2011.10208

. Roughan PG, Warrington IJ (1976) Effect of Nitrogen Source on Oxalate Accumulation in Setaria sphacelata (cv. Kazungula). Journal of The Science of Food and Agriculture 27(3): 281-286. https://doi.org/10.1002/jsfa.2740270314

. Singh PP (1974) Influence of Light Intensity, Fertilizers and Salinity on Oxalate and Mineral Concentration of Two Vegetables (Chenopodium album L. and Chenopodium amaranthicolor L.). Plant Foods for Human Nutrition 24(1):115-125.

. Smith FW (1978) The Effect of Potassium and Nitrogen on Ionic Relations and Organic Acid Accumulation in Panicum maximum var. trichoglume. Plant Soil 49: 367-379. https://doi.org/10.1007/BF02149745

. Srivastava SK, Krishnan PS (1962) An Oxalic Acid Oxidase in The Leaves of Bougainvillea spectabilis. Biochemical Journal 85(1): 33-38. https://doi.org/10.1042/bj0850033

. Sunaga Y, Harada H, Hatanaka T (2005) Varietal Differences in Nitrate Nitrogen Concentration of Sudangrass (Sorghum sudanese (Piper) Stapf). Grassland Science 51(2): 169-177. https://doi.org/10.1111/j.1744-697X.2005.00022.x

. Torell R, Young JA, Kvasnicka B (2005) Halogeton Poisoning. Cooperative Extension, University of Nevada, Fact Sheet-00-20. http://www.unce.unr.edu. Accessed date: November 2013.

. Williams MC. 1960. Effect of Sodium and Potassium Salts on Growth and Oxalate Content of Halogeton. Plant Physiology 35: 500-505. https://doi.org/10.1104/pp.35.4.500

. Williams MC, Smith BJ, Lopez R (1991) Effect of Nitrogen, Sodium and Potassium on Nitrate and Oxalate Concentration in Kikuyugrass. Weed Technology 5(3): 553-556. https://doi.org/10.1017/S0890037X00027317

. Cao H (2003) The Distribution of Calcium Oxalate Crystals in Genus Dieffenbachia Schott. and The Relationship Between Environmental Factors and Crystal Quantity and Quality [Thesis] University of Florida, Florida.

. Franceschi VR, Nakata PA (2005) Calcium Oxalate in Plant: Formation and Function. Annual Review of Plant Biology 56: 41-71. doi:10.1146/annurev.arplant.56.032604.144106

. Ilarslan H, Palmer RG, Imsande J, Horner HT (1997) Quantitative Determination of Calcium Oxalate and Oxalate in Developing Seeds of Soybean (Leguminosae). American Journal of Botany 84(9): 1042–1046. https://doi.org/10.2307/2446147

. Mazen AMA, Zhang D, Franceschi VR (2003) Calcium Oxalate Formation in Lemna Minor : Physiological and Ultrastructural Aspects of High Capacity Calcium Sequestration. New Phytologist 161: 435-448. https://doi.org/10.1111/j.1469-8137.2004.00923.x

. Prychid CJ, Rudall PJ (1999) Calcium Oxalate Crystals in Monocotyledons: A Review of Their Structure and Systematics. Annals of Botany 84: 725 – 739. https://doi.org/10.1006/anbo.1999.0975

. Webb MC (1999) Cell-Mediated Crystallization of Calcium Oxalate in Plants. The Plant Cell 11: 751-761. doi: 10.1105/tpc.11.4.751

. White PJ, Broadley MR (2009) Biofortification of Crops with Seven Mineral Elements Often Lacking in Human Diets-Iron, Zinc, Copper, Calcium, Magnesium, Selenium and Iodine (Research Review). New Phytologist 182: 49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x

. Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) N




DOI: http://dx.doi.org/10.11594/jtls.11.01.05

Copyright (c) 2021 Journal of Tropical Life Science