The Potency of Trichoderma sp. as A Biocontrol Agent against Fusarium sp. Pathogen of Porang (Amorphophallus muelleri Blume) Tuber
Keywords:
Amorphophallus oncophyllus, Antagonistic Fungi, Fungicide, ITS Sequence, Yellow KonjacAbstract
Porang (Amorphophallus muelleri Blume) has high economic value in Asia. Porang tuber is high in glucomannan and thus becomes one of the exportable food commodities. Porang plants are susceptible to wilt disease caused by Fusarium sp. Trichoderma sp. has the ability to inhibit the growth of pathogenic fungi such as Fusarium sp. This research aimed to study the potency of Trichoderma sp. in controlling the growth of Fusarium sp. Trichoderma sp. was isolated from the rhizosphere soil in A. muelleri plantation, while Fusarium sp. was isolated from A. muelleri tuber infected by Fusarium. The fungi isolates were identified phylogenetically based on the similarity of Internal Transcribed Spacers (ITS) sequence. Both fungi were antagonistically assessed based on the dual culture method. The antagonistic assay showed that the two isolates of Trichoderma had the potency to inhibit the growth of the two isolates of Fusarium. Trichoderma sp. 2 has higher antagonistic potency than Trichoderma sp. 1. Based on ITS sequence similarity, Trichoderma sp. 1 and Trichoderma sp. 2 were identified as Trichoderma longipale and Trichoderma spirale respectively, while both pathogenic Fusarium were identified as Fusarium oxysporum. Trichoderma spirale therefore could be developed as a biopesticide agent in controlling Fusarium oxysporum.
References
Arisoesilaningsih E, Indriyani S, Retnowati R, Fernandes AAR (2009) Pemodelan pertumbuhan vegetatif dan produksi umbi porang pada beberapa umur tanaman, kondisi vegetasi, tanah dan iklim agroforestri. Research Report. Universitas Brawijaya. Malang.
Yuzammi, Kurniawan A, Asih NPS et al. (2017) The Amorphophallus of Indonesia. Center for Plant Conservation Botanic Gardens - Indonesian Institute of Sciences, Bogor.
Widjanarko SB, Faridah A, Sutrisno A (2011) Effect of multi-level ethanol leaching on physico-chemical properties on konjac flour (Amorphophallus oncophyllus). In The 12th Asean Food Conference: 16-18.
Katayama K, Teramoto T (1997) Seed potato production and control of insect pests and diseases in Indonesia. Agrochemicals Japan (70): 22–25.
Rengwalska MM, Simon PW (1986) Laboratory Evaluation of Pink Root and Fusarium Basal Rot Resistance in Garlic. Plant Disease Journal (70): 670-672. doi: 10.1094/pd-70-670.
Yu L, Zhao J, Liu J et al. (2015) Identification of postharvest pathogens of Amorphophallus muelleri and indoor screening of fungicides. Journal of Agricultural Science and Technology A 5: 577 – 584. doi: 10.17265/2161-6256/2015.07.002.
Bockus WW, Bowden RL, Hunger RM et al. (2007) Compendium of wheat diseases and insects, 3rd Edition. APS Press, St. Paul, MN.
Singha IM, Kakoty Y, Unni BG et al. (2016) Identification & characterization of Fusarium sp. using ITS & RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering & Biotechnology 14 (1): 99–105. doi: 10.1016/j.jgeb.2016.07.001.
Bentley S, Pegg KG, Moore NY et al. (1998) Genetic variation among vegetative compatibility groups of Fusarium oxysporum f. sp. cubense analyzed by DNA fingerprinting. Phytopathology Journal 88: 1283 − 1293. doi: 10.1094/phyto.1998.88.12.1283.
Wibowo A, Subandiyah S, Sumardiyono C et al. (2011) Occurrence of tropical race 4 of Fusarium oxysporum f. sp. cubense in Indonesia. The Plant Pathology Journal 27 (3): 280 – 284. doi: 10.5423/ppj.2011.27.3.280.
Melysa, Fajrin N, Suharjono, Dwiastuti ME (2013) Potensi Trichoderma sp. sebagai agen pengendali Fusarium sp. patogen tanaman strawberry (Fragaria sp.). Jurnal Biotropika 1 (4): 177 – 181.
Ferniah RS, Daryono BS, Kasiamdari RS, Priyatmojo A (2014) Characterization and pathogenicity of Fusarium oxysporum as the Causal Agent of Fusarium wilt in chili (Capsicum annuum L.). Microbiology Indonesia 8 (3): 121 – 126. doi: 10.5454/mi.8.3.5.
BenÃtez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. International Microbiology 7: 249 – 260.
Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f.sp. ciceris for integrated management of chickpea wilt. Biological Control 40 (1): 118 – 127. doi: 10.1016/j.biocontrol.2006.06.006.
Singh A, Shukla N, Kabadwal BC, Tewari AK, Kumar J (2018) Review on Plant-Trichoderma-Pathogen interaction. International Journal of Current Microbiology and Applied Sciences 7 (2): 2382 – 2397. doi: 1020546/ijcmas.2018.702.291.
Liza EY, Adrinal, Trisno J (2015) Keragaman cendawan rizosfer dan potensinya sebagai agens antagonis Fusarium oxysporum penyebab penyakit layu tanaman krisan. Jurnal Fitopatologi Indonesia 11 (2): 68 – 72. doi: 10.14692/jfi.11.2.68.
Rebecca LJ, Dhanalakshmi V, Sharmila S et al. (2012) Isolation, identification and characterization of fungi from rhizosphere soil of Barleria Cristata. International Journal of Horticultural & Crop Science Research 2 (1): 1 – 6.
Dhiva S, Pillai HPJ, Shinde VM (2016) isolation and characterization of soil microorganisms for potential biocontrol activity. International Journal of Current Research in Biosciences and Plant Biology 3 (3): 26 – 29. doi: 10.20546/ijcrbp.2016.303.005.
Shi M, Chen L, Wang X et al. (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158: 166–175. doi: 10.1099/mic.0.052670-0.
Pradana GS, Ardyati T, Aini LQ (2013) Eksplorasi Kapang Antagonis dan Kapang Patogen Tanaman Apel di Lahan Perkebunan Apel Poncokusumo. Jurnal Biotropika 1 (1): 14 – 18.
Shohihati L, Suharjono (2014) Uji potensi & identifikasi molekular kapang antagonis untuk mengendalikan kapang patogen tanaman apel di perkebunan apel Gabes, Department of Biology, Faculty of Mathematics and Natural Sciences. Malang. Thesis.
Chandrashekar M, Soumya P, Raju N (2014) Fungal diversity of rhizosphere soils in different agricultural fields of Nanjangud Taluk of Mysore district, Karnataka, India. International Journal of Current Microbiology and Applied Sciences 3 (5): 559 – 566.
Ellis D, Davis S, Alexiou H et al. (2007) Descriptions of fungi 2nd Edition. Nexus Print Solution, Adelaide.
Sibounnavong PK, Soytong CC, Divina, Kalaw (2009) In–vitro biological activities of Emericella nidulans, a new fungal antagonist, against Fusarium oxysporum f. sp. lycopersici. Journal of Agricultural Technology 5 (1): 75 – 84.
Lestari FW, Suharjono, Arumingtyas EL (2013) Phylogenetic identification of pathogenic fungi from apple in Batu City, Malang, Indonesia. Advances in Microbiology 3 (1): 69 – 75. doi: 10.4236/aim.2013.31011.
GoTaq® Green Master Mix (2012) Promega Corporation USA http://www.promega.com.
Ohara T, Tsuge T (2004) FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. Eukaryotic Cell 3 (6): 1412 – 1422. doi: 10.1128/ec.3.6.1412-1422.2004.
Leslie J, Summerell B (2006) The Fusarium laboratory manual. Blackwell Publishing Ltd., Oxford.
Hafizi R, Salleh B, Latiffah Z (2013) Morphological and molecular characterization of Fusarium solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology 44 (3): 959 – 968. doi: 10.1590/s1517-83822013000300047.
El Komy, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal 31 (1): 50 – 60. doi: 10.5423/PPJ.OA.09.2014.0087.
Rianti R (2010) Uji antagonis Trichoderma harzianum terhadap Fusarium spp. penyebab penyakit layu pada tanaman cabai (Capsicum annum) secara in vitro. Universitas Tanjungpura. Pontianak. Thesis.
Samson RA, Houbraken J, Thrane JC et al. (2010) Food and Indoor fungi. Fungal Biodiversity Centre Utrecht, The Netherlands.
Verma NP, Kaur I, Masih H et al. (2017) Efficacy of Trichoderma in controlling Fusarium wilt in tomato (Solanum lycopersicum L.). Research in Environment and Life Sciences 10 (7): 636 – 639.
Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87 (1): 4 – 10. doi: 10.1094/PDIS.2003.87.1.4.
Harman GE, Howell CR, Viterbo A et al. (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2: 43 – 56. doi: 10.1038/nrmicro797.
Viterbo A, Wiest A, Brotman Y et al. (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Molecular Plant Pathology 8(6): 737–746. doi: 10.1111/j.1364-3703.2007.00430.x.
Pavlopoulos GA, Soldatos TG, Barbosa-Silva A, Schneider R (2010) A reference guide for tree analysis and visualization. BioData Mining 3 (1): 1-16. doi: 10.1186/1756-0381-3-1.
Downloads
Published
Issue
Section
License
The work has not been published before (except in the form of an abstract or part of a published lecture or thesis) and it is not under consideration for publication elsewhere. When the manuscript is accepted for publication in this journal, the authors agree to automatic transfer of the copyright to the publisher.
Journal of Tropical Life Science is licensed under Creative Commons Attribution-NonCommercial 4.0 International License