The Use of Fish Flour and Palm Sugar Medium to Grow Mataram Indigenous Isolate of Entomopathogenic Bacillus thuringiensis for Controlling Aedes agypti Larvae

Bambang Fajar Suryadi, Hilal Aisyah Hidayat, Galuh Tresnani

Abstract


To grow Mataram indigenous local isolate of entomopathonic Bacillus thuringiensis using 4 combinations of fish flour and palm sugar natural liquid medium. The culture was then tested against 3rd instar Aedes aegypti larvae to gain lethal concentration (LC) value within 72-hour test. Four combinations of fish flour and palm sugar liquid medium (in 1:1; 1:3; 1:5 and 1:7 weight ratio) were made to grow B. thuringiensis isolate Bt-TP2B. Cell, endospore and protein crystal were recorded every 24 hours within 72-hour incubation. Seventy-two-hour-old B. thuringiensis cultures from those media were serially diluted, then tested against 3rd instar B. thuringiensis larvae. Larval death was recorded every 24 hours within 72-hour observation to obtain lethal concentration (LC) values. Results from all medium were compared to those of NYSM standar medium. B. thuringiensis isolate BT-TP2B could grow in fish flour and palm sugar natural medium. The highest toxicity (the lowest LC) was seen on B. thuringiensis grown on fish flour and palm sugar natural medium in 1:1 weight ratio. The LC50 values were 1.98x103 cell/mL (in 24-hour observation) and 1.49x103 cell/mL (in 48-hour and 72-hour observation), while LC90 values were 1.35x103 cell/mL in 24-hour observation and 1.58x103 cell/mL in 48 and 72-hour observations). These values were lower (more toxic) compared to those of NYSM standard medium. Fish flour and palm sugar natural medium could be used to grow entomopathogenic B. thuringiensis. Moreover, this natural medium could increase toxicity of B. thuringiensis against B. thuringiensis3rd instar larvae.

 


Keywords


Bacillus thuringiensis, Aedes aegypti, fish flour, palm sugar, toxicity

Full Text:

PDF

References


Dinas Kesehatan Provinsi NTB (2018) Profil kesehatan Provinsi Nusa Tenggara Barat tahun 2017. Mataram, In-donesia, Dinas Kesehatan Provinsi NTB.

Bäck AT, Lundkvist Å (2013) Dengue viruses – an over-view. Infection Ecology and Epidemiology 3 (1): 1 – 21. doi: 10.3402/iee.v3i0.19839

US EPA (2016) Success in mosquito control: An integrat-ed approach. https://www.epa.gov/mosquitocontrol/success-mosquito-control-integrated-approach.html. Accessed: January 2019.

Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacil-lus thuringiensis A genomics and proteomics perspective. Bioengineered Bugs 1 (1): 31 – 50. doi: 10.4161/bbug.1.1.10519.

BPS NTB (2019) Provinsi Nusa Tenggara Barat dalam angka 2018. Mataram, Indonesia, BPS NTB.

Herfiyanti NF (2018) Isolasi Bacillus thuringiensis ento-mopatogenik terhadap Culex quinquefasciatus dari be-berapa lokasi potensial perindukan nyamuk di Kota Mata-ram. Bachelor thesis. Universitas Mataram

da Silvaa JS, Pinheiroc VCS, Litaiff-Abreub E et al. (2015) Isolation of Bacillus thuringiensis from the state of Amazonas, in Brazil, and screening against Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia 59 (1): 1 - 6. doi: 10.1016/j.rbe.2015.02.001.

El-Bendary MA (2006) Bacillus thuringiensis and Bacil-lus sphaericus biopesticides production. Journal of Basic Microbiology 46 (2): 158–170. doi: 10.1002/jobm.200510585.

McLaughlin RE, Dulmage HT, Ails R et al. (1984) U.S. standard bioassay for the potency assessment of Bacillus thuringiensis Serotype H-14 against mosquito larvae. Bul-letin of the Entomological Society of America 30 (1): 26–29. doi: 10.1093/besa/30.1.26.

Finney DJ (1971) Probit Analysis. 3rd ed. London, Cam-bridge University Press.

Minitab Inc. (2014) Minitab statistical software V16. Pennsylvania, Minitab Inc.

Içgen Y, Içgen B, Özcengiz G (2002) Regulation of crys-tal protein biosynthesis by Bacillus thuringiensis I. Effects of mineral elements and pH. Research in Microbiology 153 (9): 599 – 604. doi: 10.1016/S0923-2508(02)01367-0.

Smitha RB, Jisha VN, Pradeep S et al. (2013) Potato flour mediated solid state fermentation for enhanced production of Bt-toxin. Journal of Bioscience and Bioengineering 116 (5): 595 – 601. doi: 10.1016/j.jbiosc.2013.05.008.

Dulmage HT (1970) Production of the spore- endotoxin complex by variants of Bacillus thuringiensis in two fer-mentation media. Journal of Invertebrate Pathology 16 (3): 385 – 389. doi: 10.1016/0022-2011(70)90157-6.

Goldberg I, Sneh B, Battae E, Klein D (1980) Optimiza-tion of a medium for a high production of spore-crystal preparation of Bacillus thuringiensis effective against Egyptian cotton leaf worm Spodoptera littorallis. Bio-technology Letters 2 (10): 419 – 426. doi: 10.1007/BF00162348.

Rowe GE, Margaritis AM (1087) Rowe & Margaritis 1987.txt. CRC Critical Reviews in Biotechnology 6 (4): 87 – 127.

Bravo A, Gill SS, Soberón M (2013) Mode of action of Bacillus thuringiensis Cry and Cyt Toxins and their poten-tial for insect control. Toxicon 49 (4): 423–435. doi: 10.1016/j.toxicon.2006.11.022.

Agaisse H, Lereclus D (1995) How does Bacillus thurin-giensis produce so much insecticidal crystal protein? Journal of Bacteriology 177 (21): 6027 – 6032. doi: 10.1128/jb.177.21.6027-6032.1995

Dowell DGM, Mann NH (1991) Characterization and sequence analysis of a small plasmid from Bacillus thu-ringiensis var. kurstaki Strain HD1-DIPEL. Plasmid 5 (2): 113 – 120. doi: 10.1016/0147-619X(91)90022-O.

Aronson A, Geng C, Wu L (1999) Aggregation of Bacil-lus thuringiensis Cry1A toxins upon binding to target in-sect larval midgut vesicles. Applied and Environmental Microbiology 65 (6): 2503 – 2507.

Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53 (2): 242 –255.

Poopathi S, Tyagi BK (2004) Mosquitocidal toxins of spore forming bacteria: Recent advancement. African Journal of Biotechnology 3 (12): 643 – 650.




DOI: http://dx.doi.org/10.11594/jtls.09.02.04

Copyright (c) 2019 Journal of Tropical Life Science