Potentials of Hydrocarbon Utilization by Wood-Digesting Bacteria isolated from the Lagos Lagoon, Nigeria.

Olanike Maria Buraimoh, Adewale Kayode Ogunyemi, Isaac Edward Oyegbite, Olukayode Oladipo Amund, Matthew Olusoji Ilori

Abstract


Introduction: There is a continuous search for environmental–friendly methods to address oil-polluted environments, hence this study aimed to establish the potential of using tropical estuarine bacterial strains for degradation of crude oil in polluted environment. Microbial degradation of hydrocarbons has been considered a promising, natural, less toxic and cost-effective technology. Lignocellulose-utilizing bacterial strains (Bacillus megaterium strain NOB, Streptomyces pseudogriseolus strain EOB and Paenibacillus sp. strains ROB) were isolated from decomposing wood residues in a tropical lagoon. They were identified on the basis of morphological and biochemical characteristics, observation under scanning electron microscope and 16S rRNA gene sequencing. Methods; Microbial growth assessment coupled with biosurfactant production were performed in triplicates under aerobic batch conditions in Erlenmeyer flasks containing mineral salts medium fortified with trace elements and crude oil as the sole carbon source.  Results: The generation times of strains NOB, EOB and ROB were 28.3, 44.9 and 46.8 h; with specific growth rates of 14.2, 8.9 and 8.6 h-1,respectively on crude oil. Gas chromatographic analysis of residual hydrocarbons from the growth cultures of isolates revealed that the three strains had degraded the oil by 89.34, 86.33 and 79.37%, respectively at the end of 21 day. The cell hydrophobicity of the bacterial strains also reached 83.6, 79.4 and 69.4%, respectively. Conclusion: The results from this study suggest that wood-digesting bacterial strains from a tropical lagoon possess hydrocarbon utilization capabilities. They could therefore have potentials for deployment in the bioremediation of petrochemical spills in polluted environments.


Keywords


Bioremediation, Biosurfactant, Crude Oil, Hydrocarbons, Wood-digesting Bacteria

Full Text:

PDF

References


Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J. Microbiol. Biotechnol., 23(8):1149–1159. http://dx.doi.org/10.1007/s11274-007-9345-3

Holdway DA. (2002). The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes Marine Pollut. Bullet. 44(3):185 – 203.http://dx.doi.org/10.1016/s0025-326x(01)00197-7

Emmanuel BE, Chukwu LO, Azeez LO (2008a). Cast net design characteristics, catch composition and selectivity in tropical open lagoon. Afr. J. Biotechnol.7: 2081-2089.

Amaeze NH, Egonmwan RI, Jolaosho AF, Otitoloju AA (2012). Coastal Environmental Pollution and Fish Species Diversity in Lagos Lagoon, Nigeria. IJEP2 (11):8-16.

Mohammed MA (2004).Treatment techniques of oil-contaminated soil and water aquifers, International Conference on Water Resources & Arid Environment. pp.1-11.

Ite AE, Ibok UJ, Ite MU, Petters SW (2013). Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. American J. Environ. Prot.1: (4):78-90.http://dx.doi.org/10.12691/env-1-4-2

April TM, Foght JM, Currah RS (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian J. Microbiol., 46 (1):38–49. http://dx.doi.org/10.1139/cjm-46-1-38

Ulrici W (2000). Contaminant soil areas, different countries and contaminant monitoring of contaminants, in Environmental Process II. Soil Decontamination Biotechnology, H. J. Rehm and G. Reed, Eds.pp. 5–42. http://dx.doi.org/10.1002/9783527620999.ch1m

Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009). Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J. Microbiol. Biotechnol. 25:1615–1623.http://dx.doi.org/10.1007/s11274-009-0053-z

Das N, Chandran P (2010). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. vol 2011 1-13. http://dx.doi.org/10.4061/2011/941810

Boudia AO (2013). Bioremediation of crude oils/complex mixture of hydrocarbons (CMH) contaminants in seawater by a halotolerant bacterial under aerobic conditions: Enterobacter cloacae, Pseudomonas spp. and Escherichia coli. Global Adv. Res. J. Microbiol. 2 (8):131-136.

Buraimoh OM, Ilori MO, Amund OO, Michel Jr F. C, Grewal SK (2015a).Assessment of bacterial degradation of lignocellulosic residues (sawdust) in a tropical estuarine microcosm using improvised floating raft equipment. Biodegr. 104:186-193.http://dx.doi.org/10.1016/j.ibiod.2015.06.010

Craig JP, Kieran MC, Rebecca GP (2008). Isolation of Surfactant-Resistant Bacteria from Natural, Surfactant-Rich Marine Habitats. Appl. Environ. Microbiol.74(16):5093–5099. http://dx.doi.org/10.1128/aem.02734-07

Uzoigwe C, Burgess JG, Ennis CJ, Rahman PK SM. (2015).Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 6:245 http://dx.doi.org/10.3389/fmicb.2015.00245

Perfumo A, Smyth TJP, Marchant R, Banat IM (2009).“Production and roles of biosurfactant and bioemulsifiers in accessing hydrophobic substrates,”in Microbiology of Hydrocarbons, Oils, Lipids and Derived Compounds, ed Kenneth N.Timmis (Berlin; Heidelberg: Springer-Verlag), pp1502–1512.

Ron EZ, Rosenberg E (2001). Natural roles of biosurfactants: Minireview. Environ. Microbiol. 3(4):229–236.https://doi.org/10.1046/j.1462-2920.2001.00190.x

Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth TJ, Marchant R (2010). Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87:427–444.http://dx.doi.org/10.1007/s00253-010-2589-0

Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010).Methods for investigating biosurfactants and bioemulsifiers: a review. Critical Rev. Biotechnol. 30(2):127–144.http://dx.doi.org/10.3109/07388550903427280

Yemashova NA, Murygina VP, Zhukov DV, Zakharyantz AA, Gladchenko MA, Appanna V, Kalyuzhnyi SV (2007). Biodeterioration of crude oil and oil derived products: a review. Rev. Environ. Sci. Biotechnol. 6:315–337.http://dx.doi.org/10.1007/s11157-006-9118-8

Tang X, Dang Z, He LY, Lu GN, Tao XQ (2012). Biodegradation of crude oil by an artificial microalgal-bacterial consortium. Open Access Scientific Reports1: 118. 9.

Chang W, Akbari A; Snelgrove J, Frgon D, Ghoshal S (2013). Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: the role of aggregate size and microstructure. Chemosphere 91: 1620 – 1626.

Mohseni M, Norouzi H, Hamedi J, Roohi A (2013). Screening of Antibacterial Producing Actinomycetes from Sediments of the Caspian Sea. Int. J. Mol. Cell Med. 2(2): 64–71.

Buraimoh OM, Ilori MO, Amund OO (2015b). Characterization of lignocellulolytic bacterial strains associated with decomposing wood residues in the Lagos lagoon. Malaysian J. of Microbiol. 11(3):273-283.http://dx.doi.org/10.21161/mjm.68814

Ball AS, Betts WB, Mccarthy AJ (1989). Degradation of lignin related compounds by Actinomycetes. Appl. Environ. Microbiol. 55:1642-1644.

Chandra R, Raj A, Purohit HJ, Kapley A (2007). Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste.Chemosphere 67(4):839-846. http://dx.doi.org/10.1016/j.chemosphere.2006.10.011

Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2007). Sequential hydrophobic partitioning of cells of Pseudomonas aeruginosa gives rise to variants of increasing cell-surface hydrophobicity. FEMS Microbiol Lett. 270:214–219. http://dx.doi.10.1111/j.1574-6968.2007.00685.x

Ilori MO, Adebusoye SA, Ojo AC (2008). Isolation and characterization of hydrocarbon-degrading and biosurfactant producing yeast strains obtained from a polluted lagoon water. World J. Microbiol. Biotechnol. 24(11):2539–2545.http://dx.doi.org/10.1007/s11274-008-9778-3

Pruthi V, Cameotra SS (1997). Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens. World J. Microbiol. Biotechnol. 13:133-135. http://dx.doi.org/10.1007/bf02770821

Sabnis S, Juvale V (2016). Enrichment and isolation of biosurfactant producers from marine environment Int. J. Cur. Microbiol. Appl. Sci. 5(4):730 -740.http://dx.doi.org/10.20546/ijcmas.2016.504.084

Chikere CB, Okpokwasili GC, Chikere BO (2011). Monitoring of microbial hydrocarbon remediation in the soil. Biotech 1:117–138. http://dx.doi.org/10.1007/s13205-011-0014-8

Adekunle AA, Adebambo OA (2007).Petroleum hydrocarbon utilization by fungi isolated from Detarium senegalense (J. F Gmelin) seeds. American J. Environ. Sci., 3 (1):69-76.

Adekunle AA, Adeniyi AO (2015). Biodegradation of Petroleum by fungi isolated from Treculia africana (Dec’ ne) seeds in Nigeria. Afr. Environ. Sci. Technol. 9(2):126-135. http://dx.doi.org/10.5897/2015/AJEST2011.200

Omotayo AE, Ojo OY, Amund OO (2012).Crude oil degradation by microorganisms in soil composts. Res. J. Microbiol.7(4):209-218.http://dx.doi.org/10.3923/jm.2012.209.218

Das MP (2015). Microbial degradation of crude oil by Bacillus sp.: A bioremedial approach

Int. J. Chem. Techn. Res. 8(8):245-249.

Kawo AH, Bacha HY (2016).Crude oil degradation by Bacillus and Micrococcus species isolated from soil compost in Kano, Nigeria. Bayero J. Pure Appl. Sci. 9(1):108–117.http://dx.doi.org/10.4314/bajopas.v9i1.17

Isikhuemhen O, Anoliefo G, Oghale OI (2003). Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environ. Sci. Pollut. Res. 10(2):108-112. http://dx.doi.org/10.1065/espr2002.04.114

Higuchi T (2002). Biochemistry of wood components: Biosynthesis and Microbial Degradation of Lignins. Wood Res. 89:43-51.

Dashtban M, Schraft H, Syed TA, Qin W (2010). Review Article Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 1(1):36-50

Ringle K. (1999). A Scientific Heretic Delves Beneath the Surface, The Washington Post. Retrieved June 23, 2009 .http://dx.doi.org/10.3886/icpsr27765.v2

Perfumo A, Smyth TJP, Marchant R, Banat IM (2010).Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. Handbook Hydrocarbarbon Lipid Microbiol. pp. 1501 – 1512http://dx.doi.org/10.1007/978-3-540-77587-4_103

Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008). Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol. 63:238–248. http://dx.doi.org/10.1111/j.1574-6941.2007.00406.x

Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Anton Leeuw Int J G 74: 59–70.

Nadem HH, Sura A, Hutaf A (2014). Optimized Conditions for Bioemulsifier production by Local Streptomyces sp. SS 20 isolated from hydrocarbon contaminated soil. Romanian Biotechnol. Lett.19(1):15.

Ellaiah P, Prabhakar T, Sreekanth M, Taleb AT, Raju PB, Saisha V (2002). Production of glycolipids containing biosurfactant by Pseudomonas species. Indian J. Experimental Biol. 40:1083–1086.

Pieper DH, Reineke W (2000). Engineering bacteria for bioremediation. Curr. Opinion. Biotechnol. 11:262-270.http://dx.doi.org/10.1016/s0958-1669(00)00094-x

Buraimoh OM, Amund OO, Ilori MO (2015c). Kraft lignin degradation by autochtonous Streptomyces strains isolated from a tropical lagoon ecosystem. J. Microbiol.Biotechnol.FoodSci.5(3):248-253.http://dx.doi.org/10.15414/jmbfs.2015/16.5.3




Copyright (c) 2020 Journal of Tropical Life Science