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ABSTRACT 

 

This article discusses a fractional order eco-epidemiological model. The aim of considering the fractional order is to 
describe effect of time memory in the growth rate of the three populations. We investigate analytically the dynamical 
behavior of the model and then simulating using the Grünwald-Letnikov approximation to support our analytical 
results. It is found that the model has five equilibrium points, namely the origin, the survival of susceptible prey, 
the predator-free equilibrium, the free of infected prey equilibrium and the interior equilibrium. Numerical simula-
tions show that the order of fractional derivative affects the behavior of solutions. 
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INTRODUCTION 
The ability to support growing complexity of popu-

lation rate is addressed practically and conceptually 
through the use of mathematical models [1]. One of the 
most common is the model describing the relationship 
between two populations, predator and prey interaction 
[2]. Transmission of infectious diseases involved in a 
prey-predator relation. A parasite population can restrict 
the growth rate in host mortality so the parasite can be 
formulated as a condition threshold for the basic repro-
ductive rate. The presence of the disease makes the in-
fected individuals are more easily caught by predator [3, 
4]. Dynamical systems in the effect of disease in ecolog-
ical systems known as eco-epidemiology. 

Chattopadhyay and Arino [5] considered a three 
species eco-epidemiological system, namely, susceptible 
prey, infected prey, and predator. Prey population may 
be infected by a disease and the disease cannot be recov-
ered. The predator mainly eats the infected prey where 
the predation follows the Holling-Type II functional re-
sponse. 

Saifuddin et al., [6] modified Chattopadhyay and 
Arino model by assuming that the infected prey cannot 
reproduce, but both susceptible and infected are com-
peting for the same resources. Here, the predator con-
sumes both prey at the same rate. Later, Saifuddin et al., 

[7] has improved the previous model by assuming the 
infected and susceptible prey population do not have the 
same competitive ability in the presence of disease in 
prey population. They have considered different compe-
tition coefficients for two possible interactions (intra-
class competition in susceptible prey and inter-class 
competition between susceptible prey and infected 
prey). The predator population predates susceptible prey 
and infected prey with Holling-type II functional re-
sponse. 

Fractional calculus is the theory of differential and 
integral operators of non-integer order, and in particular 
to differential equations containing such operators [8]. 
Fractional calculus was first proposed by Leibniz and 
‘Hospital in 1965 [9]. Modeling of such systems by frac-
tional-order differential equations has the effects of the 
existence of time memory or long-range space interac-
tion [10, 11]. Rivero [12] explained the order of frac-
tional derivation is an excellent controller trajectory ap-
proach to or away from the critical point. 

In recent years, the number of applications of frac-
tional differential equations rapidly grows.  Ghaziani et 
al. [13] analyzed the predator-prey population with 
Leslie Gower Holling type-II functional response with a 
fractional-order model. The results of the analysis show 
the increasingly complex dynamics behavior by varying  
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Figure 1.  Numerical solution of system (1) for equilibrium point 

E1 with different values: α = 0.6, α = 0.7, α = 0.8 and 
α = 0.9 

 
the order of fractional while Rida et al. [14] modified the 
eco-epidemiology model as a fractional eco-epidemiolog-
ical model. Model assumed the population of predators 
and prey populations affected by disease and predation 
is assumed to follow Holling-type I functional response. 

In this article, we modify the eco-epidemiological 
model proposed by Saifuddin et al. [7]. It is assumed 
that the growth rate of the three populations not only 
depend on the current conditions but also take into con-
sideration all previous state. Therefore, by changing the 
first order derivative into a fractional order derivative, 
the model proposed by Saifuddin et al. [7] will be mod-
ified into a fractional order eco-epidemiological model. 

 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Numerical solution of system (1) for equilibrium point 

with α = 0.74 
 
The paper investigates the dynamics of the obtained 
fractional order eco-epidemiological model. We present 
the existence of equilibrium points and investigate the 
local asymptotic stability.  The model is simulated using 
the Grünwald-Letnikov approximation to support ana-
lytical results. 
 
MATERIALS AND METHODS 
Construction model 

At this stage, the eco-epidemiology model proposed 
in [7] is modified into a fractional order eco-epidemiol-
ogy model.  

 
Determination of the equilibrium point 

The equilibrium point of the system is obtained 
when the growth rate of populations is unchanged or 
zero.  

 
Stability analysis of the equilibrium point 

The local stability of the equilibrium point can be 
determined by the absolute value of the argument eigen-
values of the Jacobian matrix equilibrium. The condition 
stability shows whether the equilibrium point is stable 
or not. If the equilibrium point is stable, then any solu-
tion of the system with different initial values will be 
convergent to it, and vice versa. 
 
Numerical experiments  

Numerical simulations will be performed to support 
analytical results of the system behavior. Numerical so-
lutions of the system can show the population densities 
with consideration all previous state. To determine the 
numerical solutions of a fractional order eco-epidemio-
logical model, we use the Grünwald-Letnikov approxi-
mation method. 
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Figure 3.  Numerical solution of system (1) for equilibrium point   
with α = 0.84 

 
RESULTS AND DISCUSSION 
Mathematical model 

A fractional order eco-epidemiological model intro-
duces by changing the first derivative into some frac-
tional order Caputo-type derivatives. Suppose (S) is the 
susceptible prey population, (I) is the infected prey pop-
ulation and (P) is the predator population. We assume 
the three population densities depend on all previous 
state.  

Susceptible prey dynamic moves exponentially to-
wards carrying capacity, while carrying capacity is the 
ratio of the growth rate (r) with intra-class competition  

 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Numerical solution of system (1) for equilibrium point 
E3 with α = 0.74 

 

in susceptible prey (b). Saifuddin et al. [7] assume, the 
infected prey is not in a state to produce but to compete 
with susceptible for the same resources. Interclass com-
petetion between susceptible prey and infected prey (c) 
reduces the population growth rate. Contact between 
susceptible prey and infected prey causes susceptible 
prey become infected, where  is the rate of infection of 
the disease, and a is the half saturation constant for the 
disease transmission. Infected prey density is reduced 
due to the death of infected prey. The death rate of in-
fected prey is assumed to be . 

Predator population consume both susceptible and 
infected prey with Holling type II functional response. 
Assume that 1 is the attack rate of predator on suscep-
tible prey, 2 is the attack rate of predator on infected 
prey, c1 and c2   are the conversion efficiency of predator, 
e is the half-saturation constant of predator for suscep-
tible prey, d is the half-saturation constant of predator 
for infected prey and m is the death rate of predator. 
Then we obtain the following fractional order system: 
 

𝑑𝛼𝑆

𝑑𝑡𝛼 = (𝑟 − 𝑏𝑆) − 𝑐𝐼𝑆 −
𝛽𝐼𝑆

𝑎 + 𝑆
−

𝛼1𝑃𝑆

𝑒 + 𝑆
 

𝑑𝛼𝐼

𝑑𝑡𝛼 =
𝛽𝑆𝐼

𝑎 + 𝑆
−

𝛼2𝑃𝑆

𝑑 + 𝐼
− 𝜇𝐼, 

𝑑𝛼𝑃

𝑑𝑡𝛼 =
𝑐1𝛼1𝑆𝑃

𝑒 + 𝑆
−

𝑐2𝛼2𝐼𝑃

𝑑 + 𝐼
− 𝑚𝑃, 

(1) 
Equilibrium point 

The equilibria of the system (1) are solutions to the 
system: 

 
𝑑𝛼𝑆

𝑑𝑡𝛼 =
𝑑𝛼𝐼

𝑑𝑡𝛼 =
𝑑𝛼𝑃

𝑑𝑡𝛼 = 0 

System has five equilibria that are: 
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1. 𝐸0 = (0, 0, 0) as the origin, 
2. 𝐸2 = (

𝑟

𝑏
, 0, 0), as the survival of susceptible prey, 

3. 𝐸2 = (
𝜇𝑎

𝛽−𝜇
,

𝑎[𝑟(𝛽−𝜇)−𝑏𝜇𝑎]

(𝛽−𝜇)(𝑐𝑎+𝛽−𝜇)
, 0), as the survival of both 

susceptible and infected prey, 

4. 𝐸3 = (
𝑚𝑒

𝑐1𝛼1−𝑚
, 0,

𝑐1𝑒(𝑐1𝛼1𝑟−𝑟𝑚−𝑏𝑚𝑒

(𝑐1𝛼1−𝑚)2 , ), as the infected 

prey free equilibria, 

5. 𝐸0 = (𝑆4, 𝐼4, 𝑃4), as the interior equilibria with 

 

𝐼4 =
𝑑(𝑚(𝑒+𝑆)−𝑐1𝛼1𝑆

[(𝑐2𝛼2−𝑚)(𝑒+𝑆)+𝑐1𝛼1−𝑆]
, 

 

𝑃4 = (
𝛽𝑆

𝑎+𝑆
− 𝜇) (

𝑐2𝑑(𝑒+𝑆)

[(𝑐2𝛼2−𝑚)(𝑒+𝑆)+𝑐1𝛼1−𝑆]
), 

 

ℎ(𝑆4) = 𝑆4
3 +

𝐵

𝐴
𝑆4

2 +
𝐶

𝐴
𝑆4 +

𝐷

𝐴
= 0 

𝐴 = (𝑐2𝛼2 − 𝑚 + 𝑐1𝛼1)𝑏, 

𝐵 = −[(𝑟 − 𝑎𝑏 + 𝑐𝑑)𝑐1𝛼1 − 𝑏𝑒(𝑐2𝛼2 − 𝑚)], 

𝐵 = −[(𝑟𝑒 − 𝑎𝑏𝑒 + 𝑟𝑎)(𝑐2𝛼2 − 𝑚) + 𝑟𝑎𝑐1𝛼1 + (𝑎𝑐𝑑 +

         𝛽𝑑)𝑐1𝛼1 + 𝑑𝛼1𝑐2(𝜇 − 𝛽) − 𝑚𝑑(𝑐𝑒 − 𝑎𝑐 − 𝛽)], 

 
Stability of equilibrium point 

The dynamical behavior of system (1) around each 
equilibrium point can be studied by investigating the lo-
cal stability of the equilibrium point. The local stability 
is determined by the eigenvalues (λ) of the Jacobian ma-
trix evaluated at the equilibrium point. The equilibrium 
point is stable if all eigenvalues satisfy |arg(λ)| > α π/2. 
It is found that equilibrium E0 = (0, 0, 0)   is unstable 
node, which implies that all population will never go to 
extinct. Other equilibrium points are conditionally sta-
ble. The stability conditions of equilibrium points for 
system (1) are summarized in appendix. 

  
Numerical simulations 

In this section, some numerical simulations are 
given to illustrate the analysis results and show the ef-
fects of fractional order of the system. We run four sim-
ulations.  

The parameters used in the first simulation are                          

r = 3, b = 0.3, c = 0.1, a = 0.5, β = 1.5, α1 = 0.3, e = 3, α2 

= 0.1, d = 3, µ = 1.8, c1 = 0.8, and m = 0.8. Based on these 

parameters, it is found that there are two equilibrium 

points namely E0(0,0,0) and E1(0,0,0).  It is noted that 
𝛽𝑟

𝑎𝑏+𝑟
= 1.43 < 𝜇 = 1.8 and 𝑐1𝛼1𝑆2

𝑒𝑏+𝑟
= 0.16 < 𝑚 = 0.8. Ac-

cording Table 1, E1 is asymptotically stable irrespective 

of α while E0 is unstable. 

The numerical simulation of this case with α = 0.6,  

α = 0.7, α = 0.8 and α = 0.9 can be seen in Figure 1. It 
is shown that increasing the value of α speeds up the 
convergence of solutions to the equilibrium point E1. 

In this simulation, the relatively high values of death 
rate of infected prey and predator causes the extinction 
of infected prey and predator. Furthermore, the survival 
of susceptible prey is supported by the environment with 
carrying capacity (r / b). 

Secondly, we set the same parameter as before ex-
cept for µ = 1.3. We obtain three positive equilibrium 
points, namely E0 = (0,0,0), E1 = (10,0,0), and E2 = 
(3.25,4.05,0). Based on these parameters, it is found that                                  
𝑐1𝛼1𝑆2

𝑒+𝑆2
+

𝑐2𝛼2𝐼2

𝑒+𝐼2
= 0.16 < 𝑚 = 0.8 and 𝑟 +

𝛽𝑆2

𝑎+𝑆2
= 4.3 >

𝜇 + 2𝑏𝑆2 + 𝑐𝐼2 +
𝑎𝛽𝐼2

(𝑎+𝑆2)2
= 3.87 . Furthermore, we have 

|arg(λ)| = 1.2 and α* = 0.76. According to the condition 

in Table 1, if we take α = 0.74 then |arg(λ)| = 1.2 >𝑎𝜋

2
=

1.16, which satisfies condition (ii), therefore E2 is asymp-

totically stable. Figure 2 shows that the solution of sys-

tem (1) is convergent to E2. It shows that the system 

goes to the co-existence of susceptible prey and infected 

prey, while the predator goes to extinction. 

However, as seen in Figure 3, if we take α = 0.84 
then |arg(λ)| = 1.2 < απ/2 = 1.32. Hence, the equilib-
rium point E2 is unstable. In this case, the system shows 
a periodic behavior. Biologically, if the predation rate is 
smaller than the death rate of predator, then the preda-
tor population cannot survive. On the other hand, the 
relatively small death rate of infected prey can cause the 
infected prey densities increased asymptotically. Figure 
2 and 3 show that the variation of α causes changing the 
population densities. If α < α* then the population den-
sities are convergent to E2 while if α > α* then the pop-
ulation densities become fluctuation. 
For the third simulation, we consider the same parame-

ter values as in the second simulation, except for   m = 

0.1 We have four positive equilibrium points, namely 

E0(0,0,0), E1(10,0,0), E2(3.25,4.05,0), and 

E3(2.73,0,41.65). In this case we have 𝛽𝑆3

𝑎+𝑆3
= 0.7 <

𝛼2𝑃3

𝑑
+

𝜇 = 2.6 and 𝑟 = 3 > 2𝑏𝑆3 +
𝛼2𝑒𝑃3

(𝑎+𝑆3)2 = 2.8. We also have   

|arg(λ)| = 1.23 and α* = 0.788. For α = 0.74, we have 

|arg(λ)| = 1.24 > απ/2 = 1.16. Table 1 in appendix shows 

that E3 is locally asymptotically stable. Such behavior is 

confirmed by our simulation shown in Figure 4. This 

figure shows that all solutions of system (1) will con-

verge to the equilibrium point E3(2.73,0,41.65). 
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Figure 5.  Numerical solution of system P(t) for equilibrium 

point E3 with α = 0.85 
 

Figure 5 illustrates solution for the case of α = 0.84, 
we have |arg(λ)| = 1.24 > απ/2 = 1.32. Consequently, 
equilibria   is unstable because its stability condition is 
not satisfied. This behavior is depicted in Figure 5 which 
shows that both susceptible prey and predator popula-
tions exhibit periodic oscillation and do not converge to 
equilibrium point E3(2.73,0,41.65). From Figure 4 and 5 
we conclude that if α < α* then E3 is locally asymptoti-
cally stable and vice versa. 

From the ecological point, a relatively low infection 
rate causes the disease-free population.  Furthermore, a 
relatively small death rate of predator will support the 
survival of predator population. 

Figure 6.  Numerical solution of system (1) for equilibrium point 
E4 with α = 0.65 

 
Finally, we perform simulation using the same para- 

meter as in Simulation 1, except α2 = 1.5 and µ = 1.3. 
We have four positive equilibrium points, E0(0,0,0), 
E1(10,0,0), E2(3.25,4.05,0), and E3(5.8,3.69,0.37). Here 
we have b1 = 0.88, b2 = 0.12, b3 = 0.01, and D(P) = -0.02 
< 0, then with α = 0.65, condition (ii) is satisfied and E4 
locally asymptotically stable. The numerical simulation 
in Figure 6 shows that solution of system (1) with initial 
condition S(0) = 5, I(0) = 3, and P(0) = 1 and   is con-
vergent to (5.8,3.69,0.37). 

The increased attack rate on infected prey (α2) re-
duces the infected prey densities and increases the pred-
ator population. 

 
CONCLUSION 

In this paper, we have studied a fractional order eco-
epidemiological model. It is found that the model has 
five equilibrium points, i.e., the origin, the survival of 
susceptible prey, the predator free equilibria, the in-
fected prey free equilibria and the interior equilibria. 
Numerical results show the same result with analysis. It 
has been found 0E  is always unstable, and the others 
are locally asymptotically stable under some conditions. 
Numerical simulations indicate fractional order α is a 
factor which affects the behavior of solutions. There ex-
ists α* > 0 such that if α ϵ [0, α*) the equilibrium point 
is asymptotically stable and the population densities be-
come stationary. If α* < α, then the equilibrium point 
becomes unstable and both prey and predator popula-
tion show a fluctuation behavior. 
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Appendix I 
Table 1. The Equilibrium Point Condition Stability 
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