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ABSTRACT 
 
Heavy metal contamination in the coastal area of Cataño, Puerto Rico accountable to 

anthropogenic sources is of great concern due to the risk posed over the surrounding communities and 
adjacent ecosystems.  Estuarine ecosystems are widely recognized for the presence of mangroves. This 
type of flora is recognized for their many beneficial properties for example, the ability to purge aquatic 
ecosystems where they stand. Exploratory analyses on the phytoaccumulative capacity of three 
mangrove species for ten metals (Hg, Al, As, Cd, Cr, Cu, Fe, Pb, Mg, Zn) were performed in this 
research. Random soil samples and both green and senescent leaves of Rhizophora mangle, 
Laguncularia racemosa and Avicennia germinans from three different sites of Peninsula La Esperanza 
were analyzed in order to apply the retranslocation efficiency (RT%) and bioconcentration factor 
(BCF) concepts. After calculating the RT% and the BCF, comparison analyses among the three 
mangrove species were performed. In general, the results showed low RT% values for Avicennia in 
comparison with Rhizophora and Laguncularia. BCF values confirmed RT% results for Avicennia, 
showing higher heavy metal concentrations in its senescent leaves in contrast with the other species. 
Therefore, these preliminary results suggest that Rhizophora and Laguncularia act better as 
phytoremediators for heavy metals in polluted areas due to their ability to accumulate lower 
concentrations in senescent leaves; preventing further contamination in surrounding ecosystems by 
encapsulating the pollutants instead of exporting them.   
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BACKGROUND 

The study site is an integral component of the 
San Juan Bay Estuary system (SJBE). The SJBE 
was designated by the US Environmental 
Protection Agency (USEPA) as a resource of 
national importance in recognition of its 
economic, environmental, and recreational 
importance and, moreover, to the continued 
threats facing this estuary.  Thus, the SJBE was 
integrated in 1992 to the U.S. Environmental 
Protection Agency’s (USEPA) National Estuary 
Program (NEP). The mission of the NEP is to 
protect and restore the health of estuaries while 
supporting economic and recreational activities 
[1]. 

The  SJBE  is located in the northeast coast 
of  the  island of  Puerto  Rico  (Figure 1) and  is  
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composed of a system of water bodies and highly 
complex and interconnected wetlands which pass 
through eight of the most populated 
municipalities of the island. Among these 
wetlands there is Las Cucharillas Marsh. The 
highly diverse ecosystem existent at Las 
Cucharillas plays a very important role for a great 
variety of flora and fauna species, some of them 
even endangered. This wetland helps control the 
floods in the area and improves water quality. 
Unfortunately, due to the high population and 
industrialization surrounding the marsh, large 
level of contaminants, specifically heavy metals, 
have been affecting this ecosystem [2, 3].  

It is of general knowledge that urban and 
industrial activities significantly increase the 
heavy metal concentrations in the water and 
sediments surrounding the source facilities [4, 5].  
Elevated concentrations of trace metals pose a 
perennial threat to ecosystems due to their 
inability to be degraded biologically [6].  Lacerda 
et al. (1993) and Machado et al. (2004) [7, 8] 
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described how trace metals accumulate on 
mangrove fine roots also known as rhizospheres.  
While, Wen-jiao et al. (1997) [9], assessed the 
accumulation of 7 heavy metals in different parts 
of Rhizophora stylosa.  All of these results confirm 
the ability of mangrove species to accumulate 
trace metals in different parts of the plant 
although it seems to depend greatly on the 
specific type of mangrove species and on the 
physicochemical characteristics of the sediments.   

 

 
Figure 1. San Juan Bay Estuary in the North East part of 

the Island of Puerto Rico 

 
With the aim of trying to control the constant 

growth of contamination new technologies have 
been developed.  Technologies that favor the 
natural processes are mostly preferred; for 
example bioremediation.  Bioremediation, is the 
use of living organisms that aid in removing 
pollution [10]. A related bioremediation 
technology is phytoremediation; which is the 
process of using plants to extract, sequester 
and/or detoxify pollutants [11]. Since we are 
dealing with heavy metal contamination it is 
important to note that heavy metals are not 
degraded, therefore, in this case, the only 
possible processes are the extraction of the 
pollutants from soil and their sequestering 
(accumulation) into plant tissues.  Translocation, 
or movement of heavy metals from the roots to 
aerial parts of the plant, may also occur [12]. 
Depending on physicochemical characteristics of 
soil, after the extraction of heavy metals from 
said matrix further accumulation in plant tissues, 
bioconcentration, may occur.  There are two 
processes that this research aims to evaluate; 
retranslocation (RT%), or movement from 
senescent leaves back to the plant, and 
bioconcentration (BCF) of heavy metals in 
mangrove leaves in relation with soil 
concentrations.  As per our knowledge no 
studies on the retranslocation of heavy metals on 
mangrove leaves have been done in Puerto Rico.  
However, the retranslocation or nutrient use 

efficiency on plants has been widely studied [13, 
14, 15, 16, 17].   

In our research area, mangrove species 
Rhizophora mangle, Laguncularia racemosa, and 
Avicennia germinans are abundant. These three 
species have been widely recognized for their 
ability to extract and accumulate heavy metals in 
root/sediment interface and different parts of 
the plant, including but not limited to roots, 
stem and leaves, [6, 7, 9, 8, 18, 19, 20, 21]. 
Mangroves all around the world play a very 
important role due to their ability to stabilize 
coastal lands and provide safe and propitious 
environment for the development of diverse 
ecosystems.  They serve as feeding, breeding and 
nursing environments for a variety of wildlife [4].  

Due to the location of our research area and 
the existent contamination problems, this 
research project intends to assess the heavy 
metal contamination at Las Cucharillas Marsh. 
Our purpose is to understand the mechanisms by 
which Laguncularia racemosa, Rhizophora mangle and 
Avicennia germinans interact with heavy metals 
calculating the RT% and the BCF. 

 
  

MATERIALS AND METHODS 

Description of the Study Area 

Las Cucharillas Marsh has an extension of 

approximately 1,236 acres, which are composed 

primarily of herbaceous wetlands, mangroves 

and open water areas. This wetland receives 

industrial runoff from several industrial parks 

and raw sewage discharges form surrounding 

communities (ie. Juana Matos, Puente Blanco).  

A mitigation site of about (12 acres), identified as 

Universidad Metropolitana (UMET) research 

area, is located one mile from our research 

location. This research area is divided into two 

mitigation zones known as Bacardi and 

Flexitank. A creek running through three 

surrounding municipalities, La Malaria Creek, 

receives and finally discharges raw sewage waters 

and industrial runoff at our site of investigation. 

All these components may be contributing to the 

contamination at our research site.  

Our research site at Las Cucharillas marsh is 

specifically located at the following coordinates, 

18°27’06.28”N and 66°08’07.09” W (Figure 2). 

Coordinates were calculated using Garmin 72H 

GPS technology and based on the North 

American Datum of 1983.  This place also 
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known as La Esperanza Peninsula, located in the 

northwestern section of the San Juan Bay, is 

composed of two man-made islands created by 

the placement of dredged material from the 

dredging of the San Juan Bay navigational 

channels during the sixties [1]. For purposes of 

this study, this area was divided into three 

subareas (A, B, C) (Figure 3). Zone A 

(18°26’.980”N, 66°08’.203”W) being a mostly 

urbanized area, Zone B (18°27’.270”N, 

66°08’.032”W) known as Park La Esperanza and 

Zone C (18°27’.012”N, 66°07’.851”W) known as 

La Esperanza Isle. Each of these zones has 

specific characteristics that can affect heavy 

metal availability. Zone A is directly affected by 

water currents coming from the bay and by the 

effluent of La Malaria Creek. Park La Esperanza, 

Zone B, is the most protected site because it is 

situated in the leeward side of the peninsula, 

protected from the prevailing NE winds (Trade 

Winds) and currents. Zone C is an isle that 

encloses the whole site. Back in 2003, the US 

Corps of Engineers decided to dredge the 

sediments from the “berm” with the aim of 

opening water access to the lagoon. The 

sediments dredged were deposited in the center 

part of Zone C.  

 

 
Figure 2. San Juan Bay and Research Site  

 

Sampling and Analysis 

Sediments 

A total of three composite sediment samples 

were taken at random at each zone, following 

Environmental Protection Agency (EPA) [22] 

sediment sampling standard methods (SOP# 

2016). Samples were handled using a stainless 

steel spatula to a depth of five inches (discarding 

the first inch).  Samples were stored in closed 

sterile 6oz. glass containers (~170g) and 

refrigerated until taken to a certified private lab 

for analysis.  

 
Figure 3. Research site subdivision: Zones A (Red); 

B(Orange); C(Green).  

 

Leaves 

Approximate 50 leaves per each species were 

collected (25 green and 25 senescent) in each of 

the three selected zones. The leaves selected 

were the ones least fed upon by insects and 

looked more intact. Green leaves were 

specifically picked from the first and second 

lateral branch [9]. Leaves were stored in labeled 

plastic bags. Labeling included 1) mangrove 

species, 2) zone and 3) state (green or senescent). 

Samples were refrigerated until they were taken 

to SANCO, a private environmental laboratory, 

for analyses.   

 

Heavy metal analysis  

Both, sediment and leaf samples were analyzed 

using Induced Coupled Plasma (ICP) 

instrumentation, following EPA’s method 6010C 

for most of the heavy metals and 7471B 

specifically for Mercury (“Standardized 

Analytical Methods for Environmental 

Restoration Following Homeland Security 

Events") [23].  Based on our sediment analysis 

results, heavy metals for further analysis in leaves 

were selected. The selection was made taking in 

consideration toxicity and concentration in the 

area when compared to Florida’s Baseline [24]. 

 

Determination of RT% and BCF   

The RT%, or movement from senescent leaves 

back to the plant, for each metal in each of the 

species was calculated using Allison and Vitousek 

Research Site  
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(2004) [16] Lugo’s (1998) [13] formula (Equation 

1). The results of these calculations were 

compared among species to determine which 

mangrove species retranslocates the greatest 

amount of heavy metals.   

 

 

 

 

 

 The BCF, or accumulation of heavy metals in 

mangrove leaves in relation with soil 

concentrations, for green and senescent leaves 

was calculated respectively as described in 

Mellem et al.’s (2009) [12] formula.  The 

resulting data were used to compare the levels of 

heavy metals accumulated in leaf tissue in respect 

with the original concentration in soils.  

 

 
][

][
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BCF   

 

Statistical Analysis  

Statistically significant differences between 

mangroves species were assessed using one way 

analysis of variance (ANOVA) and T-test 

multiple comparison in Statistical Package for 

the Social Sciences (SPSS) version 18. ANOVA 

was specifically employed to assess the 

significance between green and senescent leaves 

among the species and zones. In the other hand, 

T-test was used to assess significance in leaves 

among the three species after RT% and BCF 

calculations. 

 

 

RESULT AND DISCUSSION 

Sediments 

Due to the lack of federal regulations over the 
concentration of heavy metals in sediments it is 
necessary to acquire baseline concentrations 
specific to the site desired to be studied [24]. 
Kabata-Pendias et al (1992) [25] expressed that 
natural background concentrations of trace 
elements can be used as reference values for each 
specific site, but it needs to have no human 
influence. In our site, it is very difficult to meet 
with this specification due to the heavy 
industrialization and dense population 

surrounding the area. Therefore, based on the 
similarity of the soil composition we used Chen 
et al (1999) [24] data from Florida soils to 
compare with our results.   

 

Figure 4. Soil analysis results by zone 

Previous soil [3, other UMET unpublished 
reports] data from UMET research area, Juana 
Matos, Puente Blanco, Malaria Creek and 
Bayamón river showed high concentrations of 
heavy metals compared to Floridas’ baseline [24]. 
Sediments of Malaria Creek and Bayamón river 
concentrations of As were higher (12.2 and 9.85 
μg/Kg, respectively) than baseline (0.02-7.01 
μg/Kg). Pb concentration at UMET research 
area was higher (77.6 μg/Kg) than baseline (42.0 
μg/Kg). At UMET research area, Puente Blanco, 
Juana Matos and Malaria Creek the concentration 
of Hg was higher (0.05, 0.12, 0.7 and 0.13 μg/Kg 
respectively) than the upper limit of baseline 
(0.04 μg/Kg). In the same areas, concentrations 
for Cu were higher (29.3, 27.7, 58.96, 89.17, and 
42.3 μg/Kg respectively) than the upper limit of 

100*
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baseline (21.9 μg/Kg).  Zn concentrations (36.7, 
40.9, 144.2, 270.6, and 117.3 μg/Kg respectively) 
were higher than upper limit of baseline (29.6 
μg/Kg) also at the same areas. 

Out of the 15 essential and non-essential 
metals identified in our research area (Figure 4), 
the metals Fe, Mg and Al showed the highest 
mean values (5031.75, 6439, and 2570.75 μg/Kg 
respectively) for the three assessed zones. These 
three metals in addition to Hg, As, Cd, Cr, Cu, 
Pb, Zn, were selected for the assessment of 
retranslocation and bioconcentration on 
mangrove leaves due to their toxicity and 
relatively high concentration. Out of the three 
zones, heavy metal concentrations on zone A 
were the highest. In zone A soil analysis showed 
that Se and Hg have parallel concentrations to 
upper limit of Florida’s baseline <1.45 and 0.04 
μg/Kg respectively. For the three zones, Cd 
showed higher values (0.6, 0.50, 0.48 μg/Kg) in 
comparison to the upper limit of Florida’s 
baseline (0.33 μg/Kg).  

Natural or geochemical baseline 
concentrations of heavy metals in soil will vary 
and depend mostly on type and physico-chemical 
characteristics of soil [26]. Higher than natural 
heavy metal concentrations in soil represent 
ecological risk to the entire ecosystem and its 
components. Maisto et al. (2011) [27] evaluated 
the Cr and Pb in soils by ecotoxicological tests 
and concluded that soils with high heavy metal 
concentrations have ecological risks and soils 
with low metal concentrations could have toxic 
effect due to metal availability which is related 
with physicochemical characteristics of soils. 
Due to said characteristics heavy metals such as 
Pb and Cd can be found bound to Fe-Mn oxides 
[21] and restrain their availability for uptake. The 
uptake of heavy metals by mangroves can be 
translated into low productivity [28].  
 

Retranslocation 

In the ecophysiological process of the three 
species of mangrove in Las Cucharillas Marsh, 
the retranslocation of nutrients from senescing 
leaves allows the nutrients to be available for the 
formation of new structures [14, 28]. Previous 
work carried out by Musa (1986)[29] suggests 
that R.mangle is more efficient in the 
retranslocation of Ca and A.germinans is more 
efficient in the use of N, P and K. Similar results 
were obtained in mangrove forests at Brazil [18]. 
These results, even though are for nutrients, are 
consistent with the results obtained in this study 
for heavy metals, specifically for R.mangle. Most 
retranslocation’s results for the three species in 

all the zones showed low or none RT% (Figure 
5). The lowest RT%’s obtained were for Hg, Al, 
Cu, Fe and Mg from A.germinans. When 
comparing the three species, the RT% increased 
in the following order A.germinans 
<L.racemosa<R.mangle.  
 

 
Figure 5. Comparison of retranslocation percentages 

among mangrove species. 

 
These results may be due to exclusion 

mechanisms developed by mangroves. Exclusion 

mechanisms will prevent high amounts of heavy 

metals to intrude into plant uptake. Mac Farlane 

(2002) [30] analyzed the role of mangrove as 

excluder species for non-essential metals and 

regulator for essential metals. He obtained values 

of RT for essential metals such as Cu (0.52), Zn 

(0.53) and for non-essential metal such as Pb 

(0.31). An example widely studied of these 

mechanisms is “iron plaques”. At present, some 

researchers consider that the presence of iron 
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plaques on the roots of mangroves prevent the 

entrance of trace metals to the plant, trapping 

them in the soil/root interface [8, 19]. On the 

contrary, if metals do reach the plant tissues 

there are some other factors that have to be 

taken in consideration in order to prevent 

ecological risks. Silva et al., (1998, 2006) [31, 32] 

concluded that for R.mangle the transfer of metals 

from canopy to sediment through leaf fall is very 

low in trace metal concentration and since the 

residence time of leaves on sediment is short, the 

export from said forest had relatively low metal 

concentration. Meanwhile, Wen-Jiao et al., (1997) 

[9] suggested that the trace metal concentration 

in residues on the forest floor could be 2-30 

times higher than those in plants and litterfall 

(R.stylosa), in consequence the export of metals 

through detritus to adjacent ecosystems could 

represent a high ecological risk. 

 

 
 

 
 

 
 

Figure 6. Comparison of bioconcentration capacity among mangrove species. 

 

 

Bioconcentration  

Results from BCF to a certain extent 
compliment RT% results since having low RT% 
values can be translated into higher 
bioconcentration in leaf tissue. BCF formula can 
be used to calculate the accumulation of 
contaminants in any tissue of the plant in 

relation with the concentration of the 
contaminant in soil. Since we analyzed RT% in 
leaves we adapted BCF formula to calculate the 
heavy metal accumulation on both, green and 
senescent leaves. As expected, based on RT% 
results (Figure 6), in comparison with R.mangle 
and L.racemosa, A.germinans showed higher BCF 
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values in both leaf states. Some variations on the 
general pattern of heavy metals’ RT%’s and 
BCF’s may be due to an additional source of the 
metal such as deposition. BCF values for 
senescent leaves tended to be higher than for 
green leaves, therefore the risk of exporting 
heavy metals into the environment is even higher 
than expected. In Puerto Rico, these mangrove 
species produce leaf litterfall year round. This 
could be a major problem because as Maisto et 
al., (2011) [26] stated, bioconcentration of heavy 
metals in mangrove senescent tissues pose 
potential risk of animal consumption and 
exportation to adjacent ecosystems. 

In contrast with Miao et al (2007) [33] who 
studied the BCF of Cd and Mn in Kandelia candel 
plant tissues finding that BCF values in seedlings 
had a relative high toxicity in comparison to 
other tissues, our results for the same metal were 
lower. Rachman et al. (2011) [34] also performed 
studies in the same species and concluded that 
they have high toxicity resistance to heavy metals 
and accumulate them in cell-wall tissue, roots 
and stem. This could also be an explanation for 
having lower values in our mangrove species.  
 
Table 1.  ANOVA for green and senescent leaves for the 

three species among the three zones 

Heavy  
Metal 

Green Senescent 

F Sig. F Sig. 

Hg 0.33 .729 0.33 .729 

Al 12.06 .008* 12.06 .008* 

As 11.47 .009* 11.47 .009* 

Cd 11.53 .009* 11.53 .009* 

Cr 11.47 .009* 11.47 .009* 

Cu 0.95 .437 0.95 .437 

Fe 0.16 .852 0.16 .852 

Pb 11.53 .009* 11.53 .009* 

Mg 0.36 .714 0.36 .714 

Zn 0.18 .843 0.18 .843 

*5% Significance 

 

Statistical analysis    

Although both RT% and BCF formulas 
showed overwhelming results, when statistical 
analyses were applied significant differences 
among the three mangrove species was not 
found. However, statistical significance was 
found for some heavy metals in certain species. 
Table 1 shows the ANOVA for green and 
senescent leaves of the three species in all zones 
(A, B, C). Results indicate that Al, As, Cd, Cr 
and Pb had a statistical significance of 5% for 
both leaf types. For RT% (Table 2) and BCF 
(Table 3) significant values were less likely to be 
found. In the case of RT%, 5% significance was 
only found for Cu in R.mangle and Pb in 
A.germinans and in the same specie, Al to a 10%. 

In accordance with BCF formula results for 
A.germinans, 10% significance was found for Hg 
and 5% for Al and Fe.  
 
Table 2.  T-test significance for retranslocation in leaves 

of the three species 

*10% Significance                   ** 5% Significance 
 
Table 3. T-test significance for bioconcentration 

*10% Significance                   ** 5% Significance 

 

Sediments 

High metal concentrations were found in our 
entire research area. Concentrations for As, Se, 
Pb, Hg, Cd, Cu and Zn demonstrated to be 
higher than the baseline adapted from Florida 
soils. Data indicated that the concentrations of 
heavy metals in sediments could be a potential 
risk for the life in and surrounding this 
ecosystem.  

 

Retranslocation/Bioconcentration in R. 

mangle,  L. racemosa and A. germinans. 

The concept of nutrient use efficiency or 
retranslocation [16, 14] is related with the ability 
of plant to withdraw elements from senescing 
leaves to phloem and making these nutrients 
available again. It has been proven that plants are 
more efficient in the use of N, P, K, Ca when 
they grow on nutrient-deficient soils. This 
mechanism is developed by plants for its 
survival, but the reason why it is happening for 
heavy metals, even in low ranges, is still 
uncertain. In order to understand how this 

Heavy  
Metal 

Rhizophora Laguncularia Avicennia 

 Sig. Sig. Sig. 

Hg .423 .184 .139 

Al .307 .825 .098* 

As .298 .845 .373 

Cd .324 .784 .372 

Cr .298 .845 .373 

Cu .052** .179 .363 

Fe .326 .475 .106 

Pb .324 .784 .051** 

Mg .956 .287 .195 

Zn .604 .843 .188 

Heavy  
Metal 

Rhizophora Laguncularia Avicennia 

 Sig. Sig. Sig. 

Hg .393 .387 .087* 

Al .916 .904 .036** 

As .713 .952 .858 

Cd .545 .712 .850 

Cr .615 .810 .877 

Cu .643 .455 .281 

Fe .307 .423 .004** 

Pb .640 .844 .557 

Mg .861 .592 .346 

Zn .712 .756 .620 
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process takes place biochemical analyses of 
heavy metal in mangroves should be assessed. In 
addition, taking in consideration the physico-
chemical characteristics of sediments would 
probably help to understand the bioavailability of 
heavy metals for mangrove uptake. However, 
BCF results complement RT% suggesting that 
the three studied mangrove species tend to 
bioconcentrate heavy metals at different ranges 
and that is mostly in senescent leaves.  

The ANOVA (Table 1) of our study showed 
that Al, As, Cd, Cr and Pb had a 5% significance 
among the green and senescent leaves of the 
three mangrove species. These concentrations 
reflect the undeniable ability of mangroves in our 
area to bioaccumulate. The t-test analysis (Table 
2) for retranslocation indicates that only 
R.mangle and A.germinans had significant values 
for a few heavy metals.  

T-test analysis for bioconconcentration 
(Table 3) suggest that A.germinans is the only 
species to bioconcentrate significantly Hg, Al, 
and Fe. In general, results from our research 
suggest that the three mangrove species 
accumulate Fe, Mg, Zn, which are classified, at 
certain concentrations, as essential trace metals 
for plant development [35]. Greater variety of 
heavy metals was seen to be bioaccumulated as 
the contamination rose among the zones (C< B< 
A). In addition to the previous mentioned heavy 
metals, L.racemosa accumulates Cd and Al and 
A.germinans accumulates Cu, Al, Pb, Hg. 

Among the three species, A.germinans showed 
to accumulate the wider variety of heavy metals. 
These other metals, in high concentrations are 
noxious to the environment and could pose a 
risk over thropic chains. The possible export of 
these heavy metals via detritus from our 
ecosystem must be analyzed to evaluate risk of 
bioaccumulation in marine organisms. 

 
CONCLUSION 

Results from our research suggest that the 
three mangrove species accumulate Fe, Mg, and 
Zn. However, greater variety of heavy metals was 
seen to be bioaccumulated as the contamination 
rose among the zones (C< B< A). Among the 
three species, A.germinans showed to accumulate 
the wider variety of heavy metals. 
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