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ABSTRACT 

 

Endophytic bacteria live in plant tissues which utilized in plant protection against 

phytopathogens. This study aims to investigate the diversity of endophytic bacte-

ria from the leaves of traditional medicinal plants that has anti-phytopathogens 

properties. Isolation of endophytic bacteria was done by spread plate method. The 

bacteria were characterised by Gram staining and the 16S rRNA gene analysis. 

Further screening of anti-phytopathogen activity used disc diffusion method for 

Ralstonia solanacearum, Xanthomonas campestris, Fusarium oxysporum, and 

Sclerotium rolfsii. All togethers, sixteen isolates of endophytic bacteria from the 

leaves of eight medicinal plants species were obtained. Fourteen isolates had an 

anti-phytopathogen (with eight isolates against R. solanacearum, seven isolates 

against X. campestris, nine isolates against F. oxysporum, and five isolates against 

S. rolfsii). From the 14 isolates identified, phylum Firmicutes were dominant 

(64.3%), followed by Proteobacteria (28.6%), and Actinobacteria (7.1%). Phylum 

Firmicutes consists of Bacillus indicus (BJF1, TCF1, and MCF2), Bacillus pu-

milus (CAF4), Bacillus sp. (CAF1), Bacillus subtilis (AAF2, MCF1, CAF3, and 

MCF3); phylum Proteobacteria consists of Pantoea agglomerans (CAF2), Pan-

toea stewartii (AAF4), Pseudomonas oryzihabitans (AAF3), and Pseudomonas 

psychrotolerans (AAF1); and phylum Actinobacteria consists of Kocuria kristi-

nae (CSF1). 
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Introduction 

Endophytic bacteria which live in plant tissues 

is a very interesting subject to study. This organ-

ism significantly involves in the protection of 

plants, increasing growth, and overcoming envi-

ronmental stresses [1, 2]. 

Traditional medicinal plants [such as Annona 

muricata L., Artocarpus altilis (Parkinson) Fos-

berg, Brucea javanica (L.) Merr., Citrus auranti-

folia Swingle, Cheilocostus speciosus (J. Konig) 

C. Specht, Datura metel L., Manilkara zapota (L.) 

P. Royen, Morinda citrifolia L., Syzygium cumini 

(L.) Skeels., and Tinospora crispa (L.) Miers] 

have been widely reported to have antimicrobial 

activity against human pathogen and phytopatho-

gen.  

Endophytic bacteria isolated from traditional 

medicinal plants are reported to produce antibac-

terial, antifungal and antiseptic compounds [3, 4]. 

These compounds have the potential to be utilized 

as biopesticides in controlling pests and diseases 

in plants. 

The use of endophytic bacteria as a biopesti-

cide producer is very beneficial for the environ- 
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ment. Biopesticide compounds are more environ-

mentally friendly than synthetic pesticides. This is 

because biopesticides are easily decomposed in 

nature, specific work targets, have unique proper-

ties and work methods, and are not toxic to hu-

mans [5]. 

Ralstonia solanacearum (causes of plant wilt) 

[6], Xanthomonas campestris (causes of plant 

blight) [7], Fusarium oxysporum (cause of plant 

wilt) [8], and Sclerotium rolfsii (cause of root rot) 

[9] are important phytopathogens for plants. These 

phytopathogens are soil-borne which quite diffi-

cult to control. As phytopathogen resistance in-

creases to existing pesticides, it is necessary to 

continue to explore in finding new strains of endo-

phytic bacteria that have the potential to be devel-

oped as biopesticide producers. This study aims to 

investigate the diversity of endophytic bacteria 

from the leaves of medicinal plants that can inhibit 

the growth of phytopathogens. 

 
Material and Methods 

Isolation of endophytic bacteria 

Leaves of plants A. muricata L., Art. altilis 

(Parkinson) Fosberg, B. javanica (L.) Merr., C. 

aurantifolia Swingle, Che. speciosus (J. Konig) C. 

Specht, D. metel L., M. zapota (L.) P Royen, Mor. 

citrifolia L., S. cumini (L.) Skeels., and T. crispa 

(L.) Miers were collected from the garden in 

Lakuk, Simpang Haru Village, Padang, West Su-

matra Province, Indonesia. The collection of plant 

leaves was carried out according to de Melo et al. 

(2009) [10]. Leaves were sterilized by following 

the method developed by Araujo et al. (2001) [11]. 

Isolation was carried out using the method of 

de Melo et al. (2009) [10] with modification. Ster-

ile plant leaf segments (1 gram) were mashed with 

a mortar and sterile pestle, then suspended into 9 

mL physiological NaCl (Merck®) 0.85%. The 

suspension was homogenized and serially diluted. 

Then 0.1 mL of the suspension from each dilution 

was inoculated into a Petri dish containing me-

dium Tryptic Soy Agar (TSA) (Merck®) using a 

spread plate method, then incubated at 27°C for 1-

3x24 hours. Growing isolates were observed for 

the colony morphology. 

Bacterial colonies that grow are purified on 

TSA plates using a quadrant streak plate method. 

Purified endophytic bacterial isolates were then 

stained through Gram staining. Gram staining is 

done by referring to Cappucino & Sherman (2014)  

[12], using the Gram (Merck®) staining kit.  

 

Screening of endophytic anti-phytopathogens ac-

tivity  

All isolated endophytic bacterial isolates were 

screened to determine its anti-phytopathogens ac-

tivity against R. solanacearum, X. campestris, F. 

oxysporum, and S. rolfsii. R. solanacearum and X. 

campestris were from culture collection of Micro-

biology Laboratory, Faculty of Agriculture, Anda-

las University, Padang, Indonesia. F. oxysporum 

and S. rolfsii were from culture collection of Phy-

topathology Laboratory, Faculty of Agriculture, 

Andalas University, Padang, Indonesia. Screening 

of anti-phytopathogen activity was carried out 

disk diffusion method which refers to Melliawati 

et al. (2006) [13]. Positive control used 15 ppm of 

chloramphenicol for bacteria, while positive con-

trol of fungus used 15 ppm of ketoconazole. 

 

Identification of endophytic bacteria through 

16S rRNA Analysis 

The assay was done by planting Pure culture 

of endophytic bacteria was inoculated into a test 

tube containing 4 mL of Tryptic Soy Broth me-

dium (Merck®) and incubated using a shaker for 

24 hours. The results of the culture were taken as 

much as 3 mL, then centrifuged at a speed of 

13,000 rpm, for 5 minutes. Pellets are taken to ex-

tract the genome DNA using the Wizard® Ge-

nomic DNA purification kit (Promega Corp.) fol-

lowing the manufacturer's instructions. DNA am-

plification was carried out by preparing the mix 

reagent mixture for PCR as follows (KAPA Taq 

ReadyMix Kit - KAPA): 20 μL dH2O, 25 μL mas-

ter mix PCR, 2 μL primer 9F (20 pmol) (5'-GAG 

TTT GAT CCT GGC TCA G-3'), 2 µl Primer 

1541R (20 pmol) (5'-AAG GAG GTG ATC CAG 

CC-3'), and 1 µL DNA Template with a total vol-

ume of 50 μL. PCR amplification was carried out 

as many as 30 cycles with the following programs: 

preheat at 96°C for 5 minutes, denaturation at 

96°C for 30 seconds, annealing at 55°C for 30 sec-

onds, elongation at 72°C for 1 minute, extension 

at 72°C for 7 minutes. PCR results were electro-

phoresed in 1% agarose gel using 1× TAE buffer 

then visualized using gel illuminator. Agarose gel 

is photographed as documentation. The PCR re-

sults are cleaned using the SV Gel and PCR Clean- 

Up System (Promega) Wizard. 

The purified DNA extract was sent to First 
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Base Malaysia for sequencing of the base arrange-

ment. Sequences are checked and edited using the 

BioEdit program. The similarity was analyzed us-

ing the Basic Local Alignment Tool (BLAST) at 

the National Center for Biotechnology Infor-

mation (http://www.ncbi.nlm.nih.gov). The iden-

tified strains were then registered to obtain an ac-

cession number; then phylogenetic analysis was 

carried out using ClustalW2 phylogenetic tree at 

http://ebi.ac.uk. 

 

Results and Discussion 

Isolation and purification of endophytic bacteria 

A total of Sixteen isolates of endophytic bac-

teria were obtained from 8 of 10 plants species in 

this study. These isolates were obtained from eight 

plant species, but the bacteria in the other two 

plants (D. metel L. and S. cumini (L.) Skeels.) 

were not isolated. The variety of isolates obtained 

ranged from one to four isolates for each plant (Ta-

ble 1). The results of this study are not much dif-

ferent from the results previously reported, rang-

ing from one to six isolates per plant [13, 14, 15]. 

No endophytic bacteria were found in the plants of 

D. metel L. and S. cumini (L.) Skeels. Presumably, 

when the isolation was carried out, the plant is 

dominated by obligate endophytic bacteria, so it 

cannot be cultured. Hardoim et al. (2008) [16] ex-

plained that many endophytic bacteria were obli-

gate endophytes. 

Based on the results of Gram staining, 12 iso-

lates were Gram-positive and 4 isolates were 

Gram-negative (Table 2). It can be concluded that 

in this study Gram-positive bacteria were a group 

of dominant bacteria. Gayathri et al. (2010) [17] 

and Anjum & Chandra (2015) [18] also obtained 

Gram-positive bacteria as endophytic bacteria in  

their study.  

 

Anti-phytopathogens activity of endophytic bac-

teria 

In general, isolated endophytic bacteria have 

anti-phytopathogens activity. Eight isolates had 

anti-phytopathogens activity against R. solanacea-

rum; seven isolates had anti-phytopathogens ac-

tivity against X. campestris, nine isolates had anti-

phytopathogens activity against F. oxysporum, 

and five isolates had anti-phytopathogens activity 

against S. rolfsii (Table 2). The endophytic bacte-

ria that have been isolated have low anti-phyto-

pathogens activity against phytopathogenic bacte-

ria (2 mm) compared to anti-phytopathogens ac-

tivity against phytopathogenic fungi (8 mm – 17 

mm). Based on the criteria by Davis and Stout 

(1971) [19] anti-phytopathogens activity against 

phytopathogenic bacteria in this study was weak 

(inhibitory zone was < 5 mm), whereas anti-phy-

topathogens activity against phytopathogenic 

fungi was moderate (inhibitory zone was 5 – 10 

mm) and strong (inhibitory zone was 10 – 20 mm). 

The results obtained indicate that the endo-

phytic bacteria obtained have the potential to be 

developed as a biocontrol agent or as a biopesti-

cide producer against phytopathogenic fungi. En-

dophytic bacteria can produce lysis enzymes 

against compounds such as chitin, protein [20], 

cellulose, and hemicellulose [21]. These enzymes 

can result in direct suppression of the activity of 

phytopathogenic microbes [21]. 

The ability of endophytic bacteria to produce 

anti-phytopathogens compounds was very benefi-

cial for host plants, because host plants can be 

used against phytopathogen [22]. According to 

Haas & Defago (2005) [23], this was caused by 

Table 1. Cell numbers of isolated endophytic bacteria 

No. Plant species Obtained isolate Cell numbers (CFU/g leaf) 

1. A. altilis (Parkinson) Fosberg 4 4.0 × 102 

2. Ann. muricata L. 1 1.0 × 102 

3. B. javanica (L.) Merr. 1 1.0 × 102 

4. C. aurantifolia Swingle 4 7.0 × 102 

5. Che. speciosus (J. Konig) C. Specht 1 2.0 × 102 

6. D. metel L. Cannot be isolated 

7. M. zapota (L.) P. Royen 1 1.0 × 102 

8. Mor. citrifolia L. 3 5.0 × 102 

9. S. cumini (L.) Skeels. Cannot be isolated 

10. T. crispa (L.) Miers 1 1.0 × 102 
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active plants responding to various environmental 

stimuli and can also respond to various chemical 

compounds stimulated by microbes. Both by soil 

microbes, as well as microbes associated with 

plants. 

In general, endophytic bacteria have an excel-

lent ability to inhibit phytopathogenic fungi, when 

compared to phytopathogenic bacteria. According 

to Bloemberg & Lugtenberg (2001) [24], This 

ability was caused by the ability of endophytic 

bacteria to produce diffuse and volatile antifungal 

compounds. Endophytic bacteria could mediate de 

novo antimicrobial synthesis and new antifungal 

secondary metabolites, which have been accepted 

as potential fungicides to prevent the spread of 

phytopathogens [25]. 

To determine the anti-phytopathogens activ-

ity, the disc diffusion method was applied. This 

method was one of the easy-to-use methods for the 

selection of biocontrol bacterial agents and has 

proven to be the right strategy for this experi-

mental system [26]. This method was used to de-

termine whether the isolates used can produce 

compounds that can interfere with the target mi-

crobial life cycle [27]. According to Elad & Chet 

(1995) [28], The disadvantage of this method was 

that researchers sometimes inadvertently ignore 

endophytic bacteria that do not exhibit anti-phyto-

pathogens activity, and this allows the discovery 

of antagonists in controlling phytopathogens 

through other mechanisms, such as inactivation of 

virulence factors [29]. 

 

Identification of endophytic bacterial isolates 

that have anti-phytopathogens activity 

Based on the results of 16S rDNA sequence 

analysis, 14 isolates were identified into nine dif-

ferent species with similarity ranged from 94-99% 

to the nearest strain (Table 3). The isolates which 

have similarities > 97% can be identified as the 

same species, however, the similarity < 97% is 

identified as the same genus [30]. All identified 

isolates are new strains, and each is registered in 

the National Center for Biotechnology Infor-

mation (NCBI) database with accession numbers 

KY806221-KY806234. 

Anti-phytopathogens activity test results (Ta-

ble 2) shows that strains from the isolated Bacillus 

genus have diverse anti-phytopathogens activities. 

B. indicus BJF1 has anti-phytopathogens activity 

against R. solanacearum and F. oxysporum; B. in-

dicus TCF1 only has anti-phytopathogens activity 

against X. campestris; and B. indicus MCF2 has 

anti-phytopathogens activity against R. sola-

nacearum and X. campestris. B. indicus was first 

discovered by Suresh et al. (2004) [31] in the wa-

ters of West Bengal, India, and these bacteria were 

resistant to arsenic. Hong et al. (2008) [32] report- 

Table 2. Characteristics of isolates and anti-phytopathogens activity against test microbes 

No. Isolate Gram staining 
Inhibitory zone (mm) 

R. solanacearum X. campestris F. oxysporum S. rolfsii 

1. AAF1 Negative 2 0 8 0 

2. AAF2 Positive 2 2 17 16 

3. AAF3 Negative 2 0 11 0 

4. AAF4 Negative 2 0 0 0 

5. AMF1 Positive 0 0 0 0 

6. BJF1 Positive 2 0 14 0 

7. CAF1 Positive 2 0 0 0 

8. CAF2 Negative 2 2 0 0 

9. CAF3 Positive 0 2 16 15 

10. CAF4 Positive 0 0 12 12 

11. CSF1 Positive 0 2 13 0 

12. MZF1 Positive 0 0 0 0 

13. MCF1 Positive 0 2 15 14 

14. MCF2 Positive 2 2 0 0 

15. MCF3 Positive 0 0 10 13 

16. TCF1 Positive 0 2 0 0 

17. Positive Control 21 20 26 24 
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ed B. indicus to be safely used as a prebiotic. How-

ever, there have been no reports of these bacteria 

as endophytes and their ability to produce anti-

phytopathogens compounds. This study was first 

reported that the bacterium as endophytic and has 

anti-phytopathogens activity. Further research 

was needed to determine the potential of these 

strains as biopesticide producers. 

B. subtilis belongs to Bacillus genus which has 

the most strains in this study (four strains). Three 

strains had anti-phytopathogens activity against 

phytopathogenic bacteria and fungi, namely B. 

subtilis CAF3, B. subtilis MCF1, and B. subtilis 

AAF2, whereas one strain only had antibacterial 

activity, namely B. subtilis MCF3 (Table 2). B. 

subtilis was generally found in soil, water, and as-

sociated with plants [33]. Several strains of B. sub-

tilis have been reported as endophytes and have 

the ability to inhibit soil-borne phytopathogens 

[34], such as X. campestris [35], R. solanacearum 

[36], F. oxysporum [37, 38] and S. rolfsii [39]. B. 

subtilis was reported to have the ability to produce 

antimicrobials, such as antimicrobial lipopeptides 

[40], so that these bacteria have considerable anti-

microbial activity. 

Strains from other Bacillus genera also have 

anti-phytopathogens activity, such as Bacillus sp. 

CAF1 against R. solanacearum; and B. pumilus 

CAF4 against F. oxysporum and S. rolfsii. Sturz et 

al. (2005) [41] reported that B. pumilus isolated 

from endorhiza and potato exorhiza could have 

anti-phytopathogens activity against F. oxyspo-

rum. de Melo et al. (2009) [10] also reported that 

these bacteria also had anti-phytopathogens activ-

ity against S. rolfsii. Therefore, it can be concluded 

that Bacillus was a genus of endophytic bacteria 

that has the potential to be developed as a biocon-

trol agent because it can inhibit the growth of bac-

teria and fungi. Forchetti et al. (2007) [42] men-

tions that strains of the Bacillus have the ad-

vantage of being developed as biopesticides com-

pared to other bacteria. Strains from this genus are 

easily to be cultured and stored; can be applied as 

spores, or inoculants to seeds, or bioactive com-

pounds produced; shows a protective effect on 

various pathogenic microbes and improve plant 

growth. 

K. christinae CSF1 has anti-phytopathogens 

activity against X. campestris and F. oxysporum. 

This bacterium is also known as Micrococcus kris-

tinae. This bacterium was first isolated by Kovacs 

et al. (1999) [43] from the roots of Typha angusti-

folia. These bacteria are found as endophytes in 

some plants, such as Solanum tuberosum [41], 

Carica papaya [44], Panicum virgatum [45], and 

Durio spp. [46]. K. kristinae can inhibit the growth 

of F. oxysporum [41], dissolve phosphate [46], 

and have pectinase enzyme activity [44]. 

Strains of the isolated Pantoea genus in this 

study only had antibacterial activity. Pan. agglom-

erans CAF2 have anti-phytopathogens activity 

against R. solanacearum and X. campestris, while 

Pan. stewartii AAF4 only has anti-phytopatho-

gens activity against R. solanacearum. Pantoea 

Table 2. Strains of endophytic bacteria based on the results of molecular identification through 16S rDNA anal-

ysis 

No. Isolate 
Accession number as-

signed 

Closest type strain 

(accession number) 

Similarity 

(%) 

1. AAF1 KY806234 Pseudomonas psychrotolerans AP9-27B (KM891562) 99 

2. AAF2 KY806226 Bacillus subtilis SSCT68 (AB210968) 99 

3. AAF3 KY806233 P. oryzihabitans AF31 (LC015573) 99 

4. AAF4 KY806232 Pantoea stewartii M073  99 

5. BJF1 KY806221 B. indicus (KF791344) 99 

6. CAF1 KY806225 B. cereus RNS_01 (KT380683) 94 

7. CAF2 KY806231 Pantoea agglomerans ZFJ-15 (EU931554) 99 

8. CAF3 KY806228 B. subtilis 55C1-1 (JN366797) 99 

9. CAF4 KY806224 B. pumilus FI39 (KT318787) 99 

10. CSF1 KY806230 Kocuria kristinae LCT (KR230389) 99 

11. MCF1 KY806227 B. subtilis subsp. inaquosorum MER_77 (KT719652) 99 

12. MCF2 KY806223 B. indicus WJB 131 (KU877665) 99 

13. MCF3 KY806229 B. subtilis SR41 (KY203664) 99 

14. TCF1 KY806222 B. indicus WJB 131 (KU877665) 99 

 

 



SI Zam, A Agustien, Syamsuardi et al., 2019 / The Diversity of Endophytic Bacteria from the Traditional Medical Plants 

 

    

 JTLS | Journal of Tropical Life Science 58 Volume 9 | Number 1 | January | 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Phylogenetic tree strains of endophytic bacteria that have anti-phytopathogens activity 
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was found in Citrus spp. [11], Arachis hypogea L. 

[47], Zea mays L. [48], and in several other plants 

that have been studied. Pantoea spp. reported to 

produce IAA [47], siderofor [49], and have the 

ability to fix nitrogen [48]. This bacterium does 

not have antifungal activity against phytopatho-

genic fungi [50]. Both strains of Pantoea identi-

fied in this study have opportunistic properties. 

Pan. agglomerans are opportunistic to cotton 

plants [51], however, Pan. stewartii was opportun-

istic towards maize plants [52, 53]. 

P. psychrotolerans AAF1 and P. oryzihabit-

ans AAF3 have anti-phytopathogens activity 

against R. solanacearum and F. oxysporum. 

Lamessa & Zeller (2007) [54] reported that Pseu-

domonas was a potential genus that can control R. 

solanacearum. Chaiharn et al. (2009) [55] and Mu-

nif et al. (2012) [56] adding this genus can also 

inhibit the growth of F. oxysporum. Pseudomonas 

was capable of producing siderophore [57], and 

these compounds can inhibit the growth of phyto-

pathogenic microbes [58]. 

Based on the results obtained it can be con-

cluded that endophytic bacteria that are identified 

are quite diverse and have various anti-phytopath-

ogens activities. Host plants can be a limiting abil-

ity. This can be seen from the anti-phytopathogens 

ability of B. subtilis isolated from different plants 

having different anti-phytopathogens activity 

against phytopathogens. B. subtilis is a fairly dom-

inant species found in this study. B. subtilis was 

reported by Jacobsen et al. (2004) [59] can pro-

duce antimicrobial peptides and contribute to leaf 

and root disease. Also, the bacteria also produce 

lipopeptide, which is an amphiphilic compound 

with surfactant activity [60]. Bacillus has second-

ary metabolite products that are attractive with a 

broad antimicrobial spectrum and very diverse  

structures [61]. 

The Bacillus is the most common genus found 

as endophytes. This is supported by the results of 

several studies which claim the Bacillus is domi-

nant in some plants, such as Jacarandra decurrens 

[62], Panax spp. [63, 64], Manihot esculenta [10], 

Solanum lycopersicum [56], Polygonum cuspida-

tum [65], and Musa spp. [66]. Bacillus is known 

as a cosmopolitan genus and has high survival 

ability. This can be caused by the presence of en-

dospores. Moat et al. (2002) [67] stated that endo- 

spores contained in cells have a role in protecting 

organisms against unfavorable environmental 

conditions. This leads to organisms that have them 

will be able to survive and maintain their exist-

ence. 

 

Phylogenetic endophytic bacterial isolates that 

have anti-phytopathogens activity 

The results of phylogenetic analysis of endo-

phytic bacterial strains that have anti-phytopatho-

gens activity using UPGMA (Figure 1) show 

strains of endophytic bacteria that have anti-phy-

topathogens activity grouped into three phyla. Fir-

micutes are dominant phylum (64.3%), followed 

by Proteobacteria (28.6%), and Actinobacteria 

(7.1%). The three phyla are commonly found as 

endophytes in various plants [68,69]. Some results 

of the study report that phylum Firmicutes is the 

dominant phylum [66,70,71], followed by Proteo-

bacteria and Actinobacteria, respectively [66, 71]. 

Phylogenetic tree show that the strains ob-

tained were grouped into two groups originating 

from different ancestors. The first group was Pan. 

stewartii AAF4, P. oryzihabitans AAF3, and P. 

psychrotolerans AAF1, while the second group 

was K. kristinae CSF1, Bacillus sp. CAF1, Pan. 

agglomerans CAF2, B. indicus BJF1, B. indicus 

TCF1, B. indicus MCF2, B. pumilus CAF4, B. 

subtilis CAF3, B. subtilis AAF2, B. subtilis 

MCF1, and B. subtilis MCF3. In general, the 

strains that were owned have a close relationship 

with strains that have similarities with them, only 

B. subtilis AAF2 and B. subtilis MCF1 strains 

were different. B. subtilis AAF2 has similarities 

with B. subtilis SSCT68, but has a kinship with B. 

subtilis subsp. inaquosorum MER_77, B. subtilis 

MCF1 has similarities with B. subtilis subsp. 

inaquosorum MER_77, but has a kinship with B. 

subtilis 55CI-1. Triana (2005) [87] found that dif-

ferent species have close molecular relationships, 

namely Photorhizobium thomsonianum BTAi1 

with Blastobacter denitrificans. 

 

Conclusion 

Sixteen isolates of endophytic bacteria from 

eight species of medicinal plants were obtained. 

Fourteen isolates had anti-phytopathogens activity 

(eight isolates against R. solanacearum, seven iso-

lates against X. campestris, nine isolates against F. 

oxysporum, and five isolates against S. rolfsii. 

Identification of the fourteen isolates showed that 

Firmicutes were dominant phylum (64.3%), fol-

lowed by Proteobacteria (28.6%) and Actinobac- 
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teria (7.1%). Phylum Firmicutes consist of B. in-

dicus (BJF1, TCF1, and MCF2), B. pumilus 

(CAF4), Bacillus sp. (CAF1), B. subtilis (AAF2, 

MCF1, CAF3, and MCF3); phylum Proteobacte-

ria consists of Pan. agglomerans (CAF2), Pan. 

stewartii (AAF4), P. oryzihabitans (AAF3), and 

P. psychrotolerans (AAF1); and phylum Actino-

bacteria consists of K. kristinae (CSF1). 
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